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Abstract

Black holes are classical solutions to Einstein’s field equations arising in general rel-
ativity. Superradiance is a known phenomenon in various areas of physics where one
observes radiation amplification, in different contexts. In the context of black hole
superradiance there have been efforts to understand the scattering of different fields,
both classically and quantum mechanically, against black hole horizons and study
their reflection and transmission coefficients in an effort to understand any possible
amplification. In this report, we begin by reviewing the basic ideas of superradiance
in two classical - the Reissner-Nordstrom and the Kerr black hole. We study the con-
ditions of superradiant amplification in both these settings and look at the explicit
amplification factorss. Amplification factors for scalar fields are also numerically
obtained. We extend the application of this formalism to the newly proposed loop
quantum gravity inspired Ashtekar Olmedo Singh black holes by considering rotating
solutions constructed using the modified Newman Janis algorithm. We discuss the
horizon structure, scalar field dynamics in this background and superradiant scat-
tering of scalar field. We compute the amplification factors analytically and discuss
their behaviour.

Keywords: superradiance, black holes, spacetime, radiation, differential equations,
dissipation, general relativity, quantum mechanics
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1 Introduction

Superradiance is a radiation amplification phenomenon which is observed in many different contexts
and in many areas in physics. In high energy physics, Klein’s paradox [I] was an early example of
superradiance when relativistic particle mechanics tried to explain how scattering processes some-
times resulted in a reflected number density that was greater than the incident density. A common
feature in examples of superradiance is the presence of some dissipative mechanism. In the case of
black holes, the event horizon represents a dissipative surface in the sense that there is a funda-
mental irreversibility at the event horizon which acts as a one way membrane.

A large source of reference for this report and contemporary work in black hole superradiance is
this recent review [2]. An earlier review of superradiance especially in the context of general rela-
tivity and black holes was given by Bekenstein in [3]. Some of the earlier developments were the
introduction of a new formalism to understand scattering phenomena in black hole spacetimes. For
instance, Newman and Penrose introduced a special tetrad formalism of general relativity using
spin coefficients [4]. This was used by Teukolsky in order to separate the field equations [5] which
is something that will be discussed in Section 4. A curious feature is the fact that fermions (both
massless [6], [7] and massive [§], [9], [10]) do not show superradiance.

It was also shown by Zeldovich that incident waves on any rotating body with some kind of dis-
sipation will be amplified [T1], [I2]. Zeldovich was also able to show that quantum mechanically
rotating bodies will also cause pair production. These results were used by Hawking to propose the
idea of BH evaporation [I3] which is one of the earliest ideas of quantum field theories in curved
space time. Subsequently, these ideas led to the notion of black hole entropy [I4], and work began
on understanding black hole thermodynamics.

An early example of black hole superradiance is the Penrose process [15], wherein Penrose showed
that the ergoregion of Kerr black holes can aid in a special scattering process through which energy
can be extracted out of the black hole. He showed that if a particle entered the ergoregion from
outside and disintegrates into two particles, then it can be arranged such that one of the decay
products has negative energy and is hence engulfed by the black hole. However, energy conserva-
tion then dictates that the other decay product must have a positive energy greater than that of
the incident particle. This is a characteristic feature of superradiance. In this context, we will look
at scattering of some arbitrary field against black holes, and determine the conditions under which
the fields undergo superradiant scattering. In this superradiant regime, we can also compute the
amplification factors for the fields.

While the Penrose process looks at particle scattering against black holes, one can easily consider
fields in a similar setting. Various spin fields scattering against black holes spacetimes can also
give rise to superradiance (although as mentioned before, Dirac fields do not exhibit superradiance
in the classical Kerr geometry). Throughout this thesis, we work with fields, and scalar fields in
specific. This report is arranged as follows. In Section [2] we start with a survey of superradiance
around black hole solutions, and how one determines the conditions for superradiance. In Sec[3] we
consider the Reissner-Nordstrom geometry and look at superradiance in this static geometry. In
Section [4] we discuss in detail superradiance in Kerr. We look at analytic and numerical methods to
solve for the amplification factors, which will also be used in later sections. In Section[5] we consider



the recently proposed Ashetkar Olmedo Singh black holes inspired by loop quantum gravity. Using
rotating solutions in this theory constructed through the modified Newman Janis algorithm [16],
we compare superradiance between the classical and the quantum corrected rotating black hole
backgrounds.



2 Overview of Black Hole Superradiance

Suppose we have some field ¥ that is incident on a black hole described by a metric g,,,. We can
then write down an action that can be written in the form:

szé/md‘*waMzsgmwsM (1)
where
1. g is the determinant of the metric
2. Sy is the matter action that contains the field ¥
3. R is the Ricci scalar built from contractions of the Riemann Curvature tensor
4. k=167

Until Section [§] we consider units where G = ¢ = 1. Throughout this report we use the metric
convention (— + + + ...) and take the cosmological constant A = 0.

Varying the action with respect to the fields ¥ is equivalent to varying the matter action Sy; and
this will gives us equations of motions for the field. Thus, the dynamics of the field are governed
by these equations.

If we consider a massless charged scalar field ¥ in some curved spacetime as an example then we
can write as:

S= /d4:z: V=g (R + g“”DN\I!*Dl,\IJ)
K

where F),,, is the Maxwell field tensor for the electromagnetic fields due to the charged field and
D, =V, —igA, is the minimally coupled covariant derivative.
Varying the action, or using the Euler Lagrange equations for the field ¥ we get:

(Vu—iqAy,) (VH —igAM) ¥ =0 (2)

In order to solve this we assume a stationary axisymmetric background which allows us to consider
an ansatz for the field as:

P(r)

r

W(t,r.0,6) = [ oS e Y (6.0)
lm

Using this ansatz, we can separate the equations for the function ¢ (r) and bring it to a form given
by:

d2y

dirz + Ve UJ(?“) =0 (3)
This is a Schrédinger like equation in the coordinate r, which is called the tortoise coordinate. The
function ¢ (r) can in principle be complex. The potential Ve depends on the field and the metric of



the surrounding spacetime. We take the potential to become If the wave number k near the horizon
and at infinity is denoted by ky and k., then, the function 1 has the following asymptotic form

V= (4)

Tetkurs forr —ry
JTe koo« 4 Retkoo™  for 1 — o

If we consider and take the complex conjugate, we can get a second equation for . Treating
1 and v as linearly independent functions and taking the asymptotic form of 1) from , we can
evaluate the Wronskian for the two functions given by:

() ()
W"w) )

We can compute this Wronskian at both the extreme locations. As r — rg, we have

Hence,

Wy = 2iky|T)? (5)

Similarly, the Wronskian at infinity can also be found which is given by:

Wao = 2ikso (II|* — |RI?) (6)

Since the Wronskian must be independent of the value of r, at which it was calculated, we can
equate and @ and hence we have the relation:

ki
|R* = 1> - /,€*|T|2 (7)

The relation between the amplitude of the coefficients in a scattering wavefunction generally give
us information about the reflected and transmission coefficients. Analogous to that, we see that:

A o — R > I (8)
koo
Thus, we have a situation where the reflected amplitude is greater than the incident amplitude.
This is the condition and the definition of superradiance. Depending on the background considered,
the potential Veg will change, thus changing the form of kg, k. Thus, by using , one can find
the superradiance condition.

Now that we have a procedure to determine the possibility of superradiance, we consider specific
background geometries, starting with the Reissner-Nordstrom geometry in the following section.



3 The Reissner-Nordstrom Geometry

The Reissner-Nordstrém solution is one of the spherically symmetric solutions of the Einstein field
equations. This metric represents the spacetime outside a static, spherically symmetric charged
black hole. We will consider the propagation of a scalar field in this spacetime, and look at the
superradiance features applicable in this case. The action for this background is given by:

m )
K

5:/\/ng4$( 1

3.1 The Reissner-Nordstrom spacetime

The line element for an RN black hole of M and charge @ is given by:

ds* = —f(r)dt* + %dr2 + r2dQ? 9)
with
B 2M  Q?
flr) = -tz (10)

Note that @ is valid generally for any static spherically symmetric metric. Hence, the function
f(r) is sufficient to describe a spherically symmetric, static spacetime. The tortoise coordinate
which was mentioned earlier is defined as:

dr, 1

dr — f(r)
This is generally not an invertible transformation. Given the metric in @, we want to calculate
the potential Veg and thus, the Schrodinger like equation so as to calculate the superradiance
condition.

3.2 Scattering in Reissner-Nordstrém spacetime

If we consider a massless scalar field incident on the RN black hole, then the dynamics of the scalar
field is described by - the Klein Gordon equation. We use the ansatz mentioned above, for a
wave of mode w:

P(r)

r

U(t,r,0,0) =Y e “DY,,(0,9) (11)
lm

The Klein Gordon equation can be written as ¥ = 0 which can be expanded using the identity:
1
V=
Using this, the effective potential is given by:

(l+1 ! 2qQuw 2Q?
Veffzoﬂ—f(< )+J;)— Q@ ¢ (13)

r2 r r2

0= ——0, (V=99"0,) (12)




If we now look at asymptotic solutions to then we can have plane wave solutions given by e+

as in , where the wave vector k is defined in terms of the effective potential as:

ko~ Vg

The appropriate limits on k£ can then be taken, by applying the limits to V.g. Thus, using and

f(?“)—>{0 forr —ry (14)

1 forr — o0

Then we have:

2 2()2
kH\/VH\/WQiQw‘FqQQ :Wfti
+ +

T T4+

Similarly,
koo = VVeo = w

If we use the condition given in , we have:

ky  w—qQ/ry
yPeiai— (15)

Hence, the superradiance condition is given by kg < 0 which means that:

W< 19

T+
The same condition can also be derived by thermodynamic arguments as given in [I7] and [2].

3.3 Amplification Factors

We define the amplification factor for the scalar field as:

R 2
Zslm = ||I|2 -

where s is the spin of the incident field, [ orbital quantum number of the field, m azimuthal quantum
number of the field. In order to compute the amplification factors explicitly, we will have to solve
the Schrodinger like equation given in with the potential from . This is done numerically
in the code written by the authors of [I7] which can be found herel In this program, the algorithm
followed is a matching procedure where the Schrodinger like equation is Taylor expanded and
approximately solved near the horizon and at infinity, corresponding to the asymptotic solutions
given in . Then, this is matched, term by term, to the asymptotic solution and to required order,
the coefficients R, I, T are determined. This can be used to solve for the amplification factors. A
detailed description of the matching procedure is also included in the rotating case that will be
considered in Section 4, where this procedure is used in analytical calculation of the amplification
factors. The dependence of Zyyg on w which is obtained numerically using the above mentioned
program is given in Figure 1.

10


https://centra.tecnico.ulisboa.pt/network/grit/files/amplification-factors/

Amplification Factors for Scalar Field in RN Spacetime
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Figure 1: Superradiant amplification factor for [ = 0 waves of scalar field in RN spacetime. Con-
sistent with the condition in , we see that with an increase in ) there is a greater range of w
for which Zygp > 0 which suggests superradiant amplification

3.4 Numerical Approach to Amplification Factors

The plot above is obtained using the program written by the authors of [2] which can be found
here. The numerical approach followed here is quite similar to the one followed for the rotating
case as well, which is mentioned in Section 4.5. The aim is to solve the Klein Gordon equation
in the Schrédinger like form, approximately, by making a Taylor expansion at the horizon and at
infinity. Then, the same equation is solved numerically using Mathematica and these two solutions
are matched, in order to obtain the scattering coefficients R, I and T'.

The effective potential considered for the RN case, is the one given in . The tortoise coordinate
which is usually defined as

dr, 1

A f(r)
In order to write the coordinate transformation explicitly, one has to integrate the radial function
which is a part of the metric. In general, this cannot be done exactly and approximately (near
horizon) is given by:

2M? — ) 10gr—7°+

NV

re =1+ Mlog(ry)(r_) +

11


https://centra.tecnico.ulisboa.pt/network/grit/files/amplification-factors/

This can be done by integrating the transformation while Taylor expanding the function f(r) at
the horizon. The ODE given in the code is:

P2 (r) + £ () f(r)0' (r) + Ve (r) = 0

This can be obtained from the Klein Gordon equation as follows.

The radial part of the Klein Gordon equation can be written as

d, . dR
AE(AE) +U(R)=0

where A =72 —2Mr + Q? = r?f and U = r4[(w — @)2 — fUl+1)))].

Expanding this out, we get:

2 / 1
fQR”-i-fflRl—‘r(W_qf2> R_f(l(l—i—l)—i—{’)R-i- |:2£2R’+ng:| =0
That is,
f2R//+ff/R/+VeH(T)R+ {QTR/‘F‘TR} =0

Now we substitute ¢ (r) = rR(r). Therefore,

1 !/ / 2 / !/
P(E- 2B v (B %) +vam®+ L - 5+ L2 o

r 72 r Sr 2 ror

Simplifying we have the final ODE:

2"+ f Y+ Ve(r)h = 0 (16)
where throughout this analysis we assume that r is related to r, as described above, since the

equation is to be solved in the tortoise coordinate. Then, at the horizon we consider an ansatz of
the form:

b = hr)

Once this is substituted in the ODE, we can eliminate all the dependence on r, and solve for the
function h(r). This is done by expanding h(r) at the horizon up to desired order as:

h(r) = Z an(r—ry)”

Substituting in the ODE and collecting terms for each power of (r — ), we get a set of equations
(one for each power of r whose coefficients are the unknowns)
Similarly, at infinity, one can expand h as follows:

h(r) = Z apr™ "

12



Thus, we will have two sets of equations, one each for the horizon and at inifinity for which we have
coefficients for each power of r in the solution. The ODE given in is then solved numerically
using NDSolve on Mathematica and the solution is again expanded at the horizon and infinity in
order to match the coefficients with those obtained by the approximate analytic solution. From
these, one can determine R, T, I and hence the amplification coefficients.

So far, we have been able to make use of the spherical symmetry present in the background to
separate equations, and look at perturbations to the black hole. In the following section, we
will look at black hole solutions which are axisymmetric, and this change makes the mathematics
considerably harder. We will discuss a different formalism to understand perturbations in the
classical rotating (Kerr) background.

13



4 Kerr Geometry

In this section we look at the process of superradiance and the scattering of different spin fields
on a rotating black hole described by the Kerr spacetime. The Kerr geometry describes spacetime
outside a rotating, uncharged, axisymmetric black hole.

4.1 The Kerr Spacetime

Fundamentally the line element may be written (in Boyer Lindquist coordinates) as follows:

sin #2

s sin 6%
2

~ (adt — (a® + 1?)dg)” (17)

—A
ds? = — (dt — asin 92d¢)2 + S—dr? + p*do* +
p

where

A=7r%+a®—2Mr

p? =12+ a’cosh?

This line element represents the spacetime around an axially symmetric rotating black hole of mass
M and angular momentum given by J = aM. We have taken A = 0 and thus, the event horizon
of the black hole is found as the roots of g"" = 0 which in this case would correspond to A = 0.
We define them to be r4 and r_ for the two horizons. Further, in the rotating case (unlike in the
Schwarzchild metric) ¢"" = 0 and g;; = 0 do not give the same surfaces. Instead, the roots of g;; = 0
give the surfaces known as the ergoregion, which is different from the event horizons described at
the coordinates » = r. as above. We can see that as a — 0 the line element given by reduces
to the Schwarzhild solution, thus showing that with no rotation we recover spherical symmetry.
This is also an asymptotically flat metric.

4.2 Scattering in Kerr spacetime

In order to consider scattering of fields in this spacetime, we first look at an alternative formulation
of general relativity which makes the discussion mathematically simpler. In the line elements and
tensors written so far, we have been using coordinate bases. Alternatively, we could have worked
with non-coordinate bases and done all of the same physics. At each spacetime point, we could
set up a coordinate system, thus choosing four vectors - a tetrad. Based on the symmetrise of the
problem, one could choose any kind of tetrad and here, we choose a specific complex null tetrad.
This formulation is called the Newman Penrose formalism [4], and this simplifies the Einstein
equations in Kerr spacetime. A very brief overview is given below and more details can be found
in [I8].

4.2.1 Newman Penrose Formalism

Suppose we have a vector v* in coordinate basis. We want to project this object on to the coordinate
system erected in order to write it in terms of the new non-coordinate basis. This can be done
using a transformation

(@ = eﬂ(a)vu

14



with ¢ = 0,1,2,3 and this index is in parenthesis to distinguish the tetrad index a from the
coordinate index p. The metric itself in this tetrad basis can then be defined as

OO = ¢ (@) ) g

Choosing the transformation eu(a) carefully can ensure that (®(®) is the Minkowski metric, or some

other suitably easier metric to work with. In this case, we choose four vectors where I#, n* are two
real null vectors and m*, m# is a complex conjugate null vector pair such that

L =nunt =m,mt =1,m" =n,m" =0

Iyt =—mmt =1
This gives us a constant 7(®(®)  although it will have off diagonal terms and will not be the
Minkowski metric. The Ricci rotation coefficients are now called spin coefficients. For a detailed
description of the Newman Penrose formalism, one can refer to [I§].

The explicit tetrad for the Kerr case is given in [I9]. We consider the scattering of fields in Kerr
spacetime, in this basis. For an arbitrary field of spin s where

1. s = 0 represents a scalar field
2. s= i% represents mass less Dirac fields
3. s = +1 represents an EM field

4. s = £2 represents a gravitational field

one can write down the Einstein equations in the tetrad basis. The fields themselves are expressed
using Newman Penrose scalars which are projections of the fields into this basis and can be found
in [2], [I8]. The perturbation for such an arbitrary field can be given by a single master PDE which
was derived by Teukolsky, Press and others [5], [19], [20] and is given by

(r? + a?)?
A

— a?sin 92}

0% n AMar 0% {aQ 1 } 0%

o A O0tdp | A sinb?| 9¢?

s O (e @Y 19 o\ Ta(r—M) icosf] ¢
A ar<A 8r> sin989<sm989 2178 e 90
2 2

_QS{M@"AM

—r—iacosG] %{; + (5% cot 02 — s)th = 0

Here, the function ¢ = ¢ (¢,r,0, ¢) is related to the Newmann Penrose scalars. In the case of scalar
fields, the associated Newman Penrose scalar is the scalar field itself. We take an ansatz for ¢ as

. i —iwt imo
Y= € € S(O)R(r)

15



This master equation can be separated into radial and angular equations and was done by Teukolsky;,
which are given by:

d dR K? —2is(r — M)K
A_37 AS+17 4 — = 1
dr( dr)+( A + diswr /\>R 0 (18)
and
1 d /. ,d5 2 2 o m? 2mscosf 5
— — 5 6% — -2 —— = 0 A =0 (1
<ind do <Sm9d9> +(a"w” cos sngz 2w cos 0 I s cot 0+ s+ Agm)S =0 (19)

where K = (r? 4+ a?)w — am and \ = Ay, + a’w? — 2amw. Here Ay, represent the angular eigen-
values and when aw << 1, Ag =1(1 + 1) — s(s + 1) The angular equation given by is solved
by the set of functions known as the spin-weighted spheroidal harmonics ™S = Sy, (aw, 8, ¢) In
the limit aw — 0 they reduce to the spin-weighted spherical harmonics which are given by Y5, (6, ¢)

We wish to solve this radial equation, for the slowly rotating case i.e when aw << 1. In this case,
the asymptotic behaviour of the function as r — oo is given by:

—iwr wr

RslmER(T)NISe " + R c

s r2s+1

(20)

The purpose of the analysis is now to solve the radial equation to try to compute the superradiance
amplification factors

4.3 The Radial Equation
The first task is to solve the radial equation above. We have:

P _
A L (st dBY (KT 2is(r = MK Y R=0
dr dr A

Since r4 are the roots of g™ =0 = A =0, we can write A = (r —ry)(r —r_). Then, the radial
equation can be written in terms of derivatives of R(r) by simplification and this is given by:

A(r)R"(r) + (s + )R (r)A'(r)+

(w(r? + a2) — ma)
(%

(w(r? +a*) — ma) - 2is(r — M)) + 4disrw + s(s +1) — {1 + 1>) R(r) =0.

We can write this equation in the Schrodinger like form in the following way. To do this, first we
define the tortoise coordinate 7,:

dr A
I Py M) 1)

Then,

4_ 1 d
dr  p(r)dr.’

16



Using this, and simplifying the radial equation with ® = v/r2 + a2R , we have:

d2e
a2 + Ve @ =0, (22)
where
1. Vog= Kz*QiS(T*(%fgj)f‘(Mswf)‘) —u(r)? — uu’(r)) which is implicitly a function of r, through

(21)
s(r—M)

2. u(r) = gk + Grra)

3. K= (r>+a?*w—ma
2
From Vg, one can see that as r — oo the only term that is nonzero is (ﬁ) — w?. Similarly,

2
as r — ri, = (w— mQH)Q, with Qg = Thus, the asymptotic solution to the

K
ra? i
Schrodinger like form are verified as long as we only consider in going wave modes at the horizon,
or no reflection at the horizon. Therefore, we have (in the same notation as in the Schrodinger like

equation):

kp  (w—mQpy)
—

koo w

This gives us the following condition for sueprradiance amplification:

k

> <0 = w<mQy.

koo
In solving the radial equation, we only consider the slowly rotating regime and take aw << 1. In
this limit, A = Ag,, = (I + 1) — s(s = 1). Now we define a new coordinate given by

= r—r4

ry —7r—
We transform the equation above as an ODE in x, and to do so we see that
A = (ry —r_)z(z+1)4. Using this the above ODE becomes:

d?R dR

+ [k + 2iska® — Av(v +1) —isQ(2x + 1) + Q)] R=0 (23)

where we have defined the constants

(x4 1)2

wmeH
Q: —_—
47TTH
srTy = T,
L
E=w(ry —r_),
a
Ty = 2.
a r3 + a?

17



Here, Ty is the temperature of the black hole.
To proceed beyond this point we begin making a few approximations. The general idea would be
to follow a 'matching procedure’ which is illustrated by the following algorithm

a. Obtain the near horizon solution - a solution for x << 1.
b. Obtain the far horizon limit - a solution for x >> 1

c. Compare the large x limit of (a) and small = limit of (b) and demand that these solutions
must be equal due to the continuity of 1 across space time. This will give us the integration
constants from one of the solutions.

d. The far solution can be compared with the asymptotic solution of the Schrédinger like equation
from which we can read off the coefficients I, R.

Following the above matching procedure we first try to solve for approximate solutions to the radial
equation in the near horizon and far horizon approximation. The full discussion of this solution is
given in Appendix [A]

4.3.1 Near Horizon Limit
In this regime, we take r —r; << 1. In the newly defined coordinate x this would be equivalent to

taking kx << 1. Using this approximation in the above equation, we get:

x2(x+1)2‘P—R+(s+1)x(x+1)(2x+1)@+[Q2 —(l+1)—s(s+1)z(z+1) —isQ2x+1)] R=0

dz? dz
(24)
where A is written in terms of [, s.
The solution to this equation is
R(x) = Az 7@z + 1) PF (-l —s,l —s+ 1,1 —s+ 1,1 — s — 2iQ, —x) (25)

where F(a,b,c, x) is the hypergeometric function and A; is a constant of integration.

4.3.2 Far Horizon Limit

We now solve the radial equation at large distance away from the horizon. If we take x >> 1 then
we can make the approximation (z + 1) = x. Therefore, the original radial equation can be reduced
to:

2

d*R dR
x4@ +2(s + 1)333a + k22t + 2iska® — Aa? — 2isQ(z + Q%] R =0 (26)

The full solution is given by:

R(z) = Cre k! =sU (1 — 1 — 5,21 + 2, 2ikx) + Che~ kog =175 (=1 — 5, 21, 2ikx) (27)

where U(a, b, z) is the confluent hypergeometric function and Cy, Cs are constants of integration
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4.4 Analytic Approach to Amplification Factors

We have solved the equations in the near horizon and far horizon limits. Now in order to do the
matching procedure we must consider the near horizon limit of the far solution and the far horizon
limit of the near solution and demand that since the function must be continuous throughout, the
two limiting functions must be equal. To do this we, we can Taylor expand the solutions obtained
in the relevant regions. Consider the expansion of the near solution given by . This solution is
expanded at large x which gives:

LEOLG-a) L@ (=)
I'(c—a)T(b) I'(a)T (c—b)

where a, b, ¢ are the same constants mentioned in Section 4.3.1. Similarly, we expand the far solution
for kx << 1. This gives us:

R~ Ay |2l8 (28)

R~ Biz!™% 4+ Bz !7571 (29)

By continuity of the function we demand that these solutions must be equal in this regime - large
values of the near solution and small values of the far solution. Thus, equating the coefficients of
individual powers of = we get:

L T(1—s—2Q)r(2+1)
S SN § (S R Y70) (30)
C :All“(l—s—QiQ)F(—l—ZZ) (31)

T (—1—2iQ)T (— —s)

We also have the asymptotic solution in which we can compare with the far solution by
expanding for r — oco. By doing this, we can express I, R in in terms of the C1,Cs. This is
given by:

9 l+s o 9 s—I1—1
Is — l kl+8+1 C2 ( 27’) F ( 2l) + ksfl Cl ( 27’) F (QZ + 2) (32)
w I'(=l+s) F'(l+s+1)
s Cy(=2)"*r (=2 0 (=2) T (20 +2)
_ 2s—1 I+s+1Y2 s—1
Ry=w [k T s +k NSy (33)

Note that in the above equations, | € Z* but s € Z, which means that at least some of the I’
functions can diverge. Manipulating these functions is discussed in Appendix [B] Then, we have the
amplification factor:

~1 (34)
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4.5 Numerical Approach to Amplification Factors

In a manner similar to the problem in Section 3, the authors of [2] have written a numerical program
(which can be found here) in order to compute these amplification factors. Using this, we obtain

the following plot for a massless scalar field in a slowly rotating black hole background, which is
given in Figure 2.

lu—.? .

£ far scalar field

1072

1072 10t
wiv

Figure 2: Zjy1; for Kerr BH with a = 0.99 M and M=1. This is obtained numerically by solving
(13).

The program linked above follows a very similar approach to the program for the charged black
hole case, which was discussed in Section

This concludes our discussion of superradiance in Kerr. In the following section, we will look at

rotating solutions in the newly proposed Ashtekar Olmedo Singh spacetime, which are quite similar
to the Kerr solution. The differences are due to quantum corrections in the spacetime.

20


https://centra.tecnico.ulisboa.pt/network/grit/files/amplification-factors/

5 Ashtekar Olmedo Singh Geometry

An extension of the classical Schwarzchild spacetime was recently proposed which includes quantum
corrections inspired by loop quantum gravity. The effective line element (hereafter called AOS Black
Holes) exterior to trapping and anti-trapping horizons, in static, spherically symmetric form is given
by [21] 22, 23]:

Py g2, Ped
pe L2 sinh?(0,b)

where x and T are the time and radial coordinates, respectively and dw? is the metric on a unit
2-sphere. The parameters appearing in metric coefficients are determined as

dT? + pdw? |

gabdxadxb =

tan (5cc (T)) _ ~vLg0, 2T

2 8m
_ 2 7 L 60 -2T
pC(T)—4m( + 64m2€ ),
1 1
cosh (8, b(T)) = b, tanh 5(b(,:mztamh (17)) ,
sinh (0, b(T)) 1
polT) = —2m Lo e, uE)
52

b

where m is the mass parameter and b2 = 1 + 252. Here &, and 6. are the quantum parameters
given by,

VA \1/3 1/ vAZ \1/3
fom (LB Y LAy
V2my2m 4m2m

In the above, A is the minimum non-zero eigenvalue of the area operator in LQG, given by A =
5.17€§l and v &~ 0.2375 is the Barbero-Immirzi parameter. L, is an infrared regulator in the LQG
theory which makes the phase space description well-defined. The location of horizon is determined
by T' = 0. The metric can be rewritten in the usual spherically symmetric form, in the following
way:

d

ds® = — f(r)di® + % + h(r) (d6? + sin 0dg?) |

g\r
in Schwarzschild like coordinates with the following change of notations that has been considered
in [22]:

t=xz, rg=2m, r=rgel, by= (1—}-725,,)% =1+e

In this case the metric coefficients are identified as [22]

- () T (e,

rs 16 (1 H ng"/475) (1+ 6)4

sty () o)

9(r) 16r* ( (é)”e -1)( (%)HE (2+02-e2)



64m? 1674

We will work with the quantum parameters §. and € from here on with the metric written in this
more familiar form.

27252 27252,.2
h(r) = 4m? <€2T 47 Lgoc 62T> — 2 <1 47 Lo5c7“s> )

5.1 Rotating AOS Solutions

The quantum corrected metric so far is a non-rotating black hole solution and rotating solutions in
this theory are constructed using the modified Newman Janis alogrithm [24], [16] as proposed in

[25]. The line element for this Kerr-like AOS Black hole is given by:
F
H+a*sin®6 |24/ - F
+ a” sin ( a

(35)

do?

F H
ds* = —Fdt*—2asin®0 | \/ = — F | dtdp+————————dr*+Hd6*+sin> 0
s asin < e ¢+g(7‘)h(7“)+a2 e+ +sin

where

g(r)h(r) + a®cos? 0
(k(r) + a2 cos? 49)2
g(r)h( )+a cos? 0

F(Ta 0) = H(Tv 0)

G(r

h

kﬁ@
ﬁ%

<£>l+6f ( >1+6<2+e>2—e2)

s

( Vte(2+¢€) + e) (1 + L%fé:ifrf)

h(r) = r? (1 | deLirs L372T2>

1674
L () (et )1+f)2
f(r) = (73)2 16(1+ 6) (1 N 50%8,?4 rs)

H = H(r,0) is an undetermined function

Here, €, 0¢ are the quantum parameters. Setting these parameters to zero should recover the Kerr
black hole, which will be a consistent checking mechanism. Few important limits are:




Motivated by these limits and keeping the Kerr case in mind, we take the following definitions to
make the algebra easier:

A(r)
p*(r,0)

g(r)h(r) + a®> = GH + a*sin® 0 (36)
k(r) + a®cos® 6 (37)

Now, a general axisymmetric rotating black hole has a line element of the following form [26], [27]:

_N2-W? sin29d »2

32
ds? = 3 t* — 2Wrsin® 0dtd¢ + K°r? sin® d¢” + = (Ner? + r2d92) (38)
T

where, N, W, K, B are functions which can be taken to be of the form:

B(r,0) = Rp(r)
¥(r,0) = r*Ry(r) + a* cos®
e -
N2(r,0) = Rs(r) — R”; ") j—i
K*(r,0) = (i 3 [P R%(r) 4+ a®Rx(r) + a” cos® ON?(r, 0)] + M

Comparing coeflicients between and will be useful in the following. Also, choosing Ry, = 1
recovers the Kerr metric when Rg =1, Ry; = 2M in .

5.2 Horizons

For the rotating AOS black hole, we do not yet have an analytical expression for the horizon. This
is difficult since the roots of A = 0 generally give the horizon, but here, the quantum parameters
are found in the exponent of the variable r in the function, if one explicitly writes it down. In this
context, we consider “small” quantum corrections such that one can expand A about the Kerr outer
horizon. That is to say, we will consider a Taylor’s expansion of A upto 2nd order about r = r_Ife”
and up to first order about ¢ = 0, which gives us two roots for A. On considering the classical
limit, we find that one of the roots reduces to rfe”. We denote this root as r in what follows, and
is (up to first order in €) the outer horizon of the rotating AOS metric. The other root represents
some other surface which does not have the interpretation of the horizon, and we shall denote this
by r’. Thus, around r = 7K we can approximately write A in the form A = (r —ry) (r — 1),

upto first order in e. The actual expressions are included in a Mathematica notebook [28].
Usually, demanding that A = 0 has real roots is used to find the location of the horizon and to

avoid a naked singularity. For the Kerr black hole, this is achieved by the condition M > a. In the
AOS case, this is modified. Given the form of A, one can check whether roots to this equation exist,
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in the region where the classical condition holds. That is, we want to check the horizon structure of
the rotating AOS black hole, inside the classically allowed region. In doing so, we find the following
parameter space. We see that even with maintaining M > a, certain values of a are only available
to black holes with higher masses since A becomes completely positive and hence has no roots,
when % is high. The precise threshold of % past which A fails to have roots depends on the value
of M and is seen to increase, for increasing M. This can be observed from the parameter space
plot, shown in Fig . The complete region represents the classically allowed region of parameters.
The blue curve and the region under the curve represents the threshold at which the rotating AOS
black hole horizon ceases to exist since A ceases to have roots beyond the threshold value of 7.
Therefore, even in the classically allowed region, the quantum corrections play a role so as to further
restrict the parameter space under which the rotating AOS black hole horizon is well defined. Note
that this does not require the first order expansion in €, since this is obtained directly from the
function A. A simulation showing the change in the function A is included in the Mathematica
notebook attached [28].

Allowed Parameter Space for the Existence of Horizon

&
M
1.00
0.99 -
0.98 — AOS
Kerr
0.97
0.96
L L L L L L L L L L L L L L L L J M
2 4 6 8 10
Allowed Parameter Space for the Existence of Horizon
a
m
1.0000
0.9995
0.9990 [
r — AOS
0.9985} Kerr

0.9980

0.9975/-

L L L J M
200 400 600 800 1000

Figure 3: Comparing allowed parameter space in a/M vs M plane for Kerr and AOS.

We now follow the Teukolsky approach and stick to scalar field scattering in AOS.
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5.3 Scattering of Scalar Fields in AOS Spacetime

Following the study of scattering in Kerr spacetime, one can construct an analogous transformation
using the Newman Penrose formalism to look at scattering of spin fields in this rotating black hole
background. However, since the associated Newman Penrose scalars for scalar fields are the fields
themselves, as a first step we can directly compute the Klein Gordon equation for a massless scalar
field in this background. This can be written as [J¢¥ = 0 where:

1
v—g
with g being the determinant of the metric g,,, and g*” being the inverse metric. Using we can

calculate the components g*”. This is done using Mathematica and are rewritten in the following
form:

U= Oy (\/jgg#l/ay) (39)

o p* + 242 sin® 0p? + a* sin 0* — a?sin? 6
N AH
to aA —a®sin? 0 — ap?
N AH
A
rr _ =
Y T H
1
00 _ L
Y T H

oo _ A—a’sin’0

g AH sin? 0

Expanding and after some algebra, we have the equation:

(k+d®)?— Aa’sin® 0\ 0% 2a(gh—k) 0*p (A —d?sin®0 8¢
A ot? A It Asin® 6 0?2

R0 (HAD 0 (Hsmion)
Hor \ p* or Hsin6 06 02 00)

Using the classical limits for the functions k(r), A(r) above, we see that this equation reduces to:

(r2 4+ a?)? — Aa®sin® 0 8271/1 n daMr 0 a?sin®f — A @
A oz A 0tdd Asin®6 ) 0¢?

A
_Eg HA 9y _ P’ 90 (Hsindoyp —0 (41)
H or /;2 Oor Hsin6 00 /;2 00 )

where A, p? have reduced to A = 72 —2Mr+a? and p~2 = 2 +a? cos? § which are the usual variables
in the Kerr case. We see that the terms that do not depend on the function H(r,8) are equal to
the corresponding coefficients of the Klein Gordon equation in Kerr space time - as they should
be, since the classical limit of the Kerr-like AOS black hole should reduce to the Kerr black hole.
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Hence, for the classical limit of the equation in the AOS case to be entirely equivalent to that in
the Kerr case, we can choose the undetermined function H(r,6) as

H(r,0) = p2(1"7 0)

Now, using the line element for the Kerr like AOS Black Hole and the line element for a generic
rotating black hole, we can compare the gggp components to find:

22(r,0) = H(r,0)

However, ¥2(r,0) = 2Ry, (1) + a? cos? # and choosing Ry, = 1 gives us Kerr again. Hence, we take
take:
H = p*> =Ry (r) + a* cos®
as a starting point.
But p? = k(r) + a? cos? . Using the explicit form of k(r) and h(r) from [25], we choose
VLTSN g
1674

f
Taking the classical limit, %{?T* — 0 = Ry — 1 thus, recovering the Kerr case again.

R2<1+

With this choice of functional form for H the Klein Gordon equation in the Kerr-like AOS spacetime
is given by:

((kJra) — Aa?sin 0) 0?1 _ 2a(gh—k) 0% B (Aa sin 0)

%y
o A oto¢ Asin? 0 02
ﬁ
o0

8 1 0

To separate this equation we can take an ansatz for ¥ of the form:

A

b = R(r)S(0)ewr+ims )
Substituting this in we have the separated equations:
d dR 2 k 2\2 2 h—k + 2 92
d7~<Adr>+(w( +a%)* + mfza(g ) +m?a —GQWQ_AOlm)RZO (44)
1 d ds 2
Sinede<81n0de>+( 2 2COS 0 — ?20+A0lm>s—0 (45)

where A = A + a?w? — 2amw is the constant of separation.
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Comparing the angular equation with what one would obtain in Kerr, we can see that they are
identical. In fact, this is to be expected since the quantum corrections are only found in the functions
of the metric that depend on r and do not have any pure angular dependence. Consequently, the
solution to S(#) is the spin weighted spheroidal harmonics (with spin s = 0 for scalar fields). If we
consider sufficiently small aw then the angular eigenvalues Ag;,,, can be written as:

Ao = 11+ 1) + O(a*w?) (46)

We can now proceed to look at the radial equation.

5.4 The Radial Equation
The radial part of the Klein Gordon equation is given by:

d [ dR K2
w(Am>+<A‘*>RO (47)
where K = (k(r) + a?)w — ma.

To solve this, we can write it in the Schrodinger like form, as in . To do this, first we define the
tortoise coordinate 7.:

dr A
I, E e ) “8)
Then,
d_ 1 d
dr  p(r)dr,

Using this, and rewriting , we have:

d’R n KA dR K? — A\ + d*w? — 2amw) R—0
drz =~ (k+a?)2dr, (k(r) + a?)? N
Now, we take a transformation to define a new function: ® = 'k + a2R. Using this, we can write
down the final equation as:
d2o
dr2

Vg ®=0 (49)

where

1. Vi (Kz—A(?;iL;;—Qamw) —u(r)? — /W/(T)> which is implicitly a function of r, through

K’

2. u(r) = spianye

3. K= (k+a*>)w—ma
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2
From Vg, one can see that as r — oo the only term that is nonzero is (ﬁ) — w?. Similarly,

2
as r — 1y, (k:fT) - (w— mQH)27 with Qf = Thus, the asymptotic solution to the

Schrédinger like form are verified as long as we only consider in going wave modes at the horizon,
or no reflection at the horizon. Therefore, we have (in the same notation as in the Schrodinger like
equation):
kl: (w—mQp) (50)
koo w?
Thus, we recover the same condition as Kerr, for superradiant amplification: w < mQy

In solving this equation, we will only consider the slowly rotating regime as mentioned above i.e
aw << 1 and make the following change of variables.

= r—=r4
Ty —Tr—
Using this reduces to:
d’R dR - ~
(@ +1)2 5 e+ )2z + )T+ [k? ez 4 1)+ QQ} R=0 (51)
where
TOH
(ry —r-)
4 ==
ToH k(ry) + a?
. 2
i 10°K
2 0r? |,
+

Recall that in the Kerr limit, oy reduces to Ty which was the temperature of the Kerr black
hole. For the AOS black hole, we do not ascribe any such interpretation at this stage. To solve
this equation, we use the same 'matching procedure’ as explained in Kerr (refer Appendix |A|for a
detailed discussion).

5.4.1 The Near Solution

In the near horizon limit, reduces to

2

2 (x + 1)2(317? +x(z 4+ 1) (22 + 1)%z - [—)\x(ﬂc +1)+ QQ} R=0 (52)

This has a solution of the form (satisfying in going boundary conditions at the horizon):
R(z) = Aje~ @z + 1)~ 9F (—z, [+1,1— 20, —z) (53)
where F' is the hypergeometric function and we have used Ag, = (I + 1) in the slow rotating

approximation.
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5.4.2 The Far Solution

In the far region limit  >> 1 and the equation becomes:

d?R  2dR ~ A
it - = 4
dx2+xdx+[ xQ}R 0 (54)
This has a solution of the form:
R(z) = Cre~ gy (1 1,20 +2 22k$) + Cpe—tkag—i= 1U( l, —21,2iim) (55)

where U is the confluent hypergeometric function. Matching the cross limits of (5355)) we find the
constants C4, Cs:

r (1 - 2i©) (2 +1)

Cl:Alr(z+1)r(z+1—2¢Q)

r (1 - 22’62) (120
" (4 - 2@@) T (-1)

Comparing the far solution with the asymptotic solution at oo we have the required coefficients:

Co=A

G (220 T (=2) 5 G (=2) D (20+2)

1
T w T (1) T(1+1)

1o Co(2)' T (=2) -, Oy (20) 7 T (204 2)
Rwlkm T (1) +E T(l+1)

Once we have obtained these coefficients, we use the definition of the amplification factor

Zlm = dEOUf - ’
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5.5 Amplification Factors and Results

5.5.1 Effect of the rotation parameter

a=09M,M=102

Zo11 (%)
0.0014 -
0.0012}
0.0010 -
8.x107 — AOS
Kerr
6.x1074
4.x107
. . . . L WM
0.15 0.20 0.25 0.30
a=0.99 M, M = 10?
Zo11 (%)
0.0025
0.0020
— AOS
0.0015
Kerr
0.0010
. . . L owM
0.15 0.20 0.25 0.30
a=0.997 M, M = 102
Zo11 (%)
0.0030 -
0.0025
0.0020 AOS
Kerr
0.0015 -
0.0010
. . . . L WM
0.15 0.20 0.25 0.30

Figure 4: Comparing the effect of increasing a on Zy;; with M = 102, We see that for black holes of
a constant mass, an increase in the rotation parameter increases the separation between the AOS
and Kerr superradiance. In this mass regime, superradiant amplification in AOS starts out lower
than that of Kerr, but increases and exceeds Kerr with an increase in a
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5.5.2 Effect of mass

a=099M, M =102

Zo11 (%)
0.0025
0.0020 |-
— AOS
0.0015
Kerr
0.0010
. . . . L oM
0.15 0.20 0.25 0.30
a=099M,M=10°
Zo11 (%)
0.0025
-
~
0.0020 -
— AOS
0.0015
Kerr
0.0010 |
: : : : WM
0.15 0.20 0.25 0.30
a=0.99 M, M = 10*
Zo11 (%)
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0.0020
AN
— AOS
0.0015 +
Kerr
0.0010
. . . . L owMm
0.15 0.20 0.25 0.30

Figure 5: Comparing the effect of increasing M on Z1; with a = 0.99M .By varying the mass with
a constant rotation parameter, we see the opposite effect. The amplification is much more closer
between Kerr and AOS. This can be understood by noting that an increase in mass corresponds

to a decrease in quantum correction effects. Thus, the large mass limit and the classical limit, are
identical.
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6 Discussions and Conclusions

In this thesis we have explored superradiance in the context of rotating black holes. We started
with a brief introduction to superradiance in static black holes by looking at the classical Reissner-
Nordstrém solution, then moved to the classical rotating black hole - the Kerr solution. Following
a thorough review of superradiance in Kerr, we have attempted to extend this understanding to
Kerr like black holes with quantum corrections proposed by AOS, inspired by loop quantum gravity.

We considered rotating solutions in this spacetime constructed using the modified Newman Janis
algorithm [25], and looked at superradiance in AOS. A number of subtle complications arise, begin-
ning with defining the new horizons, and in understanding the role of the quantum corrections in
how the horizons are perturbed. It is surprising that the condition for superradiance remains the
same in the AOS case, although we see that for small black holes with large rotation parameters, the
amplification of AOS is higher. The quantum corrections in AOS are inversely related to the mass
of the black hole. Thus, we are required to consider extremely small black holes - mass comparable
to the Planck length - in order to truly work in the regime where the quantum gravity corrections
dominate. This is generally not the regime in which Kerr black holes are studied, although any
comparison between these two theories must happen at this length scale to truly understand the
quantum effects. Although the condition for the superradiance remains the same in both cases, the
allowed window of w is larger for AOS black holes. As the mass of the black hole increases however,
the quantum corrections naturally decrease and one near identical behaviour between Kerr and
AOS. A natural next step would be to understand superradiant scattering of other spin fields in
this background which can be done by making a straightforward generalisation of the Kinnersely
tetrad in the Newman Penrose formalism to the AOS case.

A Solving the Radial Equation in Kerr

In this section, we discuss the solution of the radial equation for Kerr spacetime. The solution in
AOS spacetime is identical.

A.1 Near Horizon Solution in Kerr

To solve equation we can redefine the function in the following ways.

RE) =

Then we have,

Ld[f = —(s4+iQ)z '\ "CTAR(z) + 275+ iQ—z];

&2U, y e o dR o d°R
U e O)a—2—HD B(a) — 9(s 1+ i0)p-1—(+HD B | (i) TR
702 ( (s +1iQ))(s +iQ)x R(x) (s +1iQ)x T +x 72

Using this definition, the equation simplifies to:

d?U, ) aU; 2
x(l—i—x)W—(l—km) [(1—s42z—2iQ(1 + x)] %—i-Ul [l(l +2)+1F14+2)+QQ2+x)+I(1+s+ x))] =0
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Next, we define

_ U=
U2(-T) - (.’13+ 1)iQ—s
Using this, we have the equation:
d*U, du.
—w(r+ 1)+ (2IQ+ (— 1+3)(1+2x))d—; —(s(s+1) =1+ 1)Uy =0

The standard form of the Euler Hypergeometric differential equation is given by [29]:

e L R R KA

abf(u) =
The above equation can be brought to this form by taking

u=—x
=—(l+5s)

b=1l—-s+1

c=1—s—2iQ

Thus, we have:
Us = F(a,b,c,—x)

with a, b, ¢ defined as above and F' is the hypergeometric function. Combining the functions Uy, Us
to find the original radial function, we get the solution in
A.2 Far Horizon Solution

Starting with we can divide by z* and using m—lg, << 1, we have:

T 2

2 1 .
d’R | 2( —l—s)ﬁ_’_ k2+2zskz_i P
dz? z dz

To solve this equation, we again redefine the function appropriately. Firstly, consider:

Pi(z) = ¢ """ R(x)

P(z) = e~ (—ikR(z) + R'(x))

P/ (z) = e ** (R"(z) — K*R(z) — 2ikR/(z))
Therefore, rewriting the ODE in terms of P;, we have:

d2 P
T

dpP;
+2x(1 4 s —ikz)—

o + (=l =17+ s+ 5% — 2ikx)P, = 0
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From this, consider:

Py(x) = 2! Py ()

Py(z) = [(1 - s)z' " P (z) + 2" P{(2)]

PY(z)=[(I—s)(1—s—1z"* 2P (z) + 2(1 — s)z'* ' P(z) + 2! * P/ (2)]
Thus, in terms of P, the ODE simplifies to:

d2P2 . dP2 .
e +2(1+1- zkx)a —2ik(14+1—5)P,=0

Now, we make another coordinate transformation such that v = 2ikx. Doing this gives us the final
equation:

xT

&P,

v ar
du?

du

+ 20+ 1) — 1] (—l+s—1)Py =0

This resembles the standard form of the Confluent Hypergeometric differential equation which is
[29]:

d*f df
—J —yl=L —af=0
ydy2+[ ]dy f
with
y=u = 2ikx
a=—(-l+s—1)
b=21+2

Therefore we have:

Py(z) =U({+1-s,20+2,2ikx)
where U(a, b, ) denotes the confluent hypergeometric function.
In a similar way, we get another linearly independent solution which is
U (-l —s,—2l,2ikx)
(2 +1)

Pg(x) =

B Manipulating I' functions
We encounter I' functions with negative arguments in the amplification factors of both the Kerr

and the Kerr like AOS BH. To circumvent this, we can manipulate the functions using the following
properties.
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B.1 Method 1

From the integral representation of I' (z) we have, for z € C,z ¢ Z~
I'(z+1) =2T(2)
IN(1—2)=(—2)IT(-2)
We use this to prove the following result for n € Z.
Claim: P(—2)T(1 1+ 2)
-z +z
T(z—n)= (-1 v -T%)
(z=n)=(-1) Fl4n-2z2)
Proof: For n =1, consider the RHS:

D(-a)P(+2)  PalA+z) TQ+2) o
T2—2)  (I1-2)(—2D(-2) =2(z—1) =T(z—1)=LHS

If we assume this holds for n = k we have:

k1 D(=2)P(1 + 2)
I'l+k—2)

By the method of induction, we would have to prove this for n = k + 1.

Considering the LHS

I'(z—-k)=(-1)

I(z—k) _ (=)t I(—2)I(1+2) _(—1)F I(—2)IT(1+2)
(z—k-1) (z—k-1DI(14+k-2) F2+k—=z2)

which is the required result.

Nz—k—-1)=

B.2 Method 2

We use the I" function reflection formula:

I'(s—a+1)

ey R M v

for a,b € Z and complex s

B.3 Method 3

A last resort is to consider [, s as 'nearly’ integers as given in [30]. In these cases, we can use the
following properties of the I' function:
We have Euler’s reflection formula, for z ¢ Z [29]:

™

(1 - 2)T(z) (57)

sinmz

Using this, one can show that:
L(—l—-1) 1 I'(1+1/2)
I'(—1/2)  2cos(wl)/2 T'(I+2)
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