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We perform the shadow calculation of the loop quantum gravity motivated regular black hole
recently proposed by Ashtekar, Olmedo and Singh (will be termed AOS black hole hereafter). In
the process, we also construct the rotating loop quantum gravity inspired solution of the originally
proposed static spherically symmetric AOS black hole by applying the modified Newman-Janis
algorithm. We study the quantum effects on the shadows of both the non-rotating and rotating
loop quantum black hole solutions. It is observed that the general shape of the shadow for non-
rotating AOS black hole is circular in shape as is expected for its classical counter part too, but the
presence of loop quantum gravity inspired modification contracts the shadow radius and the effect
reduces with the increase in the mass of the black hole. On a similar note, in the rotating situation,
we find contraction in shadow radius due to quantum effects and the tapered nature of the shadow
as expected from the classical Kerr case. However, instead of the symmetrical contraction, like
non-rotating one, we found more contraction on one side relative to the other when we compare our
result with the shadow of the Kerr black hole. We finally studied super-radiance in rotating AOS
background and observed that the super-radiance condition for massless scalar field is identical to
that of the Kerr case with the rotation of the BH being more compared to Kerr in the low mass
regime. With an increase in mass of the rotating AOS black hole, the difference from Kerr starts to
become insignificant.

PACS numbers: 04.62.+v, 04.60.Pp

I. INTRODUCTION

Black hole (BH) solutions are ubiquitous in the the-
ory of gravity. In fact it is believed that every galaxy
contains one supermassive BH at its centre. Several ob-
servational evidences have confirmed this, including the
one in our galaxy. From the very beginning of Einstein’s
general theory of relativity, vast attention has been given
to these compact objects, starting from various observa-
tional to theoretical aspects and their analyses. While
its existence is now unquestionable, its detection, since
nothing can escape from it, still remains a very tough job.
In this direction, the concept of “black hole shadow” be-
comes very important. The initial idea about the shadow
of a black hole was given by Synge [1] and Luminet [2], for
a Schwarzschild BH and later Bardeen [3] extended the
idea for the Kerr BH. Recently, the event horizon tele-
scope has observed the shadow of the BH in the centre
of the M87∗ galaxy [4–6]. Till the emergence of this con-
cept, huge attention has been devoted to find the char-
acteristics of shadows of different BHs (for a review and
more references on the development of the subject, see
[7, 8]), for various reasons. In general it was found out
that for a wide range of rotating BHs, the shadow radius
is dependent on the black hole spin parameter, the con-
figuration of the light emission region near the BH and
on the angle of inclination [9]. Studies along different av-
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enues such as: shapes of black hole shadows with various
configurations and in various background geometries [10–
16], non-rotating and rotating BH spacetime shadows in
several modified theories of gravity [17–23], constraining
and measuring BH parameters from the study of shad-
ows [24–32], BH shadows in dynamically evolving space-
times [33], testing the general theory of relativity using
BH shadows [34–36], proposing new methods of calcu-
lating black hole shadows [37, 38], shadows of quantum
corrected black holes [39–42], proposals to use shadows
as standard rulers [43, 44] were already done in the liter-
ature. On another hand, it is to be mentioned that the
shadow of an object in the sky does not always necessar-
ily mean to be that of a BH, it may be of some exotic
compact objects too [45–50] and all the above analyses
can be done with such shadows which will give us impor-
tant information about these objects too.

In strong gravitational regime, the quantum nature of
spacetime is very important to construct a viable theoret-
ical model of the dynamics of gravity. Furthermore, the
singularity inside the BH has been a troubling and un-
comfortable region. Non-singularly complete solutions,
such as regular BHs are one of the suitable candidates to
avoid such situations. There exists already many regular
BH solutions in the literature [51–57]. However, in most
of the cases, such BH space-times are not obtained as a
solution of some underlying theory, neither are they con-
nected to any quantum theory of gravity. On the other
hand, it is well know that near the BH singularity the
quantum effects are not negligible and must be incorpo-
rated within the solution itself. Towards this direction,
Loop Quantum Gravity (LQG) turned out to be one of
the few successful attempts to understand the quantum
nature of gravity. There are few LQG inspired BH solu-
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tions [58–62] in literature and the characteristics of their
shadows have been studied both for non-rotating as well
as rotating [40] cases. The investigation shows the pres-
ence of quantum effects on the shadow of such quantum
corrected BHs. The shadow radius contracts compared
to the usual situation when one incorporates the LQG
correction and squeezes more and more as one goes to
stronger quantum regime.

Very recently, Ashtekar, Olmedo and Singh [63–65]
found a complete regular static BH spacetime from an
effective LQG motivated theory which is a quantum ex-
tended version of Kruskal geometry. The usual singular
point r = 0 is hidden within a minimum area element.
Throughout the rest of the paper, we will denote this
background as AOS BH. Not many works have been done
on this particular BH background except [66], where the
authors have studied scalar perturbations of the AOS BH
and found significant difference in the quasinormal mode
frequencies when compared with the Schwarzschild one.
The purpose of the present paper is to understand the
quantum correction through its effect on the BH shadow.
In the process, we also find the rotating counter part of
the static AOS BH by employing the Newman-Janis (NJ)
algorithm. Then the shadows for both non-rotating and
rotating BHs are obtained. We observe that the LQG
inspired corrections can provide noticeable effect on the
shadow only when the BH is of the order of Planck size.
Therefore at present, in all practical situations, the quan-
tum effects should remain non-detectable. Nevertheless,
new physics can appear at different length scales in the
theory. Having said this, completely from the theoretical
aspect, we investigate the shadows at the Planck scale.
On the other hand the microscopic black holes are impor-
tant at primordial level. Therefore understanding these
LQG inspired BHs might be relevant to understand few
important aspects of the inflationary era during the early
stages of our Universe.

We have the following observations.

• Although the shape of the shadow for non-
rotating AOS BH on the celestial plane does not
change (circular in shape) when compared with the
Schwarzschild BH, the presence of LQG inspired
quantum modification contracts the radius. The
contraction becomes less with the increase in the
mass of the AOS BH.

• In rotating situation, we again find contraction in
shadow radius due to quantum effects. Instead
of symmetrical contraction, like non-rotating one,
here we have more contraction on the right hand
side relative to the left hand side when one com-
pares with shadow for vanishing quantum parame-
ters.

• For a fixed mass of BH contraction increases on the
right hand side while the same decreases on the left
side as we increase the rotation parameter.

• For a fixed rotation of BH the contraction decreases

as the mass of BH increases. Moreover, it ap-
proaches towards shadow of the Kerr BH as one
increases the mass.

As an addition, we describe the super-radiance prop-
erty of the rotating AOS BH which we have constructed
as well. Black hole superradiance and stability has been
studied in detail in various contexts and similar works
can be found in the literature [67–79]. We will show that
the behaviour of the horizon angular velocity of the Kerr
BHs and the rotating AOS BHs are similar and matches
with each other for small spin parameter, while, the value
of the angular velocity starts to change significantly as
we start to increase the spin parameter.

The organisation of the paper is as follows. In the
next section we briefly discuss about the non-rotating
AOS BH. Using NJ formalism in this section, we also
find the rotating counter part of the static AOS BH. Sec-
tion III has been devoted to build the working formulae
to construct the shadow. Here we show and discuss about
the structures of the shadows for both non-rotating and
rotating cases. The super-radiance phenomenon is dis-
cussed in Section IV. Finally, we conclude in Section V.
We use units where G = c = 1 unless otherwise specified.

II. AOS BLACK HOLE

AOS BH is a complete regular static solution of LQG
motivated effective theory [63–65]. This does not contain
the singular point r = 0 as it has been hidden by a min-
imum area element, determined by “some” underlying
microscopic theory. The original solution is spherically
symmetric and non-rotating. Here we first briefly review
the non-rotating AOS BH and then using the Newman-
Janis (NJ) formalism its rotating counter part will be
found out.

A. Non-rotating AOS: a brief review

The effective metric, exterior to trapping and anti-
trapping horizons, is given by static, spherically symmet-
ric form [63–65]:

gabdx
adxb = − p2

b

pc L2
o

dx2 +
γ2pc δ

2
b

sinh2(δbb)
dT 2 + pcdω

2 , (1)

where x and T are the time and radial coordinates, re-
spectively and dω2 is the metric on a unit 2-sphere. The
parameters appearing in metric coefficients are deter-
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mined as

tan
(δcc (T )

2

)
=
γL0δc

8m
e−2T ,

pc (T ) = 4m2
(
e2T +

γ2L2
0δ

2
c

64m2
e−2T

)
,

cosh
(
δb b(T )

)
= bo tanh

(
1

2

(
boT + 2 tanh−1

( 1

bo

)))
,

pb(T ) = −2mγL0
sinh (δb b(T ))

δb

1

γ2 − sinh2(δb b(T ))
δ2b

, (2)

where m = GM
c2 = M (in the units mentioned above) is

the mass parameter and b2o = 1 + γ2δ2
b . Here δb and δc

are the quantum parameters given by,

δb =
( √

∆√
2πγ2m

)1/3

; Loδc =
1

2

( γ∆2

4π2m

)1/3

. (3)

In the above, ∆ is the minimum non-zero eigenvalue of
the area operator in LQG, given by ∆ ≈ 5.17`2pl and
γ ≈ 0.2375 is the Barbero-Immirzi parameter. Lo is an
infrared regulator introduced to make the phase space
description well-defined. The location of horizon is de-
termined by T = 0.

In order to express the above one in our familiar static,
spherically symmetric form

ds2 = −f(r)dt2 +
dr2

g(r)
+ h(r)

(
dθ2 + sin2 θdφ2

)
, (4)

in Schwarzschild like coordinates the following change of
notations has been considered in [65]:

t = x, rS = 2m, r = rS e
T , b0 ≡ (1+γ2δ2

b )
1
2 = 1+ε .

(5)
In this case the metric coefficients are identified as [65]

−f(r) = −
(
r

rS

)2ε

(
1−

(
rS
r

)1+ε
)(

2 + ε+ ε
(
rS
r

)1+ε
)2

16
(

1 +
δ2cL

2
0γ

2r2S
16r4

)
(1 + ε)4

×
(

(2 + ε)2 − ε2
(rS
r

)1+ε
)

; (6)

1

g(r)
=
(

1 +
δ2
cL

2
0γ

2r2
S

16r4

)

×

(
ε+

(
r
rS

)1+ε

(2 + ε)
)2

((
r
rS

)1+ε

− 1
)((

r
rS

)1+ε

(2 + ε)2 − ε2
) ;(7)

and

h(r) = 4m2

(
e2T +

γ2L2
0δ

2
c

64m2
e−2T

)
= r2

(
1 +

γ2L2
0δ

2
cr

2
S

16r4

)
.

(8)
Henceforth the quantum parameters are δc and ε (since
we switched from δb to ε). This form of the metric will
be suitable for our main purpose.

Few important features of the form (4) are worth men-
tioning here. f(r) diverges as one goes to r → ∞. But
still AOS can be shown to be asymptotically Minkowski.
As mentioned in [65] while one generally checks asymp-
totic flatness by checking the r →∞ limit of the metric
components, and comparing with ηab, one can show that
a given metric gab can be taken to be asymptotically flat
at spatial infinity if the components reduce at least as fast
as 1/r as r →∞, to the components of some flat metric
η̃ab which exists, while the coordinates (t, θ, φ) are kept
constant. In [65], they show asymptotic flatness of the
above metric using this idea and a time dependent coor-
dinate change. Then, this time coordinate is no longer
associated with a timelike Killing vector. For the detailed
analysis see Sec IV.B. of [65].

B. Rotating spacetime through modified
Newman-Janis Algorithm

The usual Newman-Janis algorithm (NJA), as pro-
posed in [80, 81], is used to construct a stationary and ax-
isymmetric spacetime from a static and spherically sym-
metric one having the form (4). The steps involved in the
algorithm have been discussed in Appendix A. This for-
malism has been successfully used in several cases to find
the rotating counter part of the static spherically sym-
metric metric. So, applying NJA to the metric (4), one
can in principle obtain the rotating counterpart of the
same. However the job of choosing the exact complexi-
fied form of the metric functions is a tedious one because
there are various ways in which this can be done and it
also needs to be chosen in such a way that the transfor-
mation (A11) is allowed i.e., χ1(r) and χ2(r) must be
functions of r only and not any other coordinates. The
usual procedure fails to satisfy this for our present metric
(4) (for details see Appendix A 1).

To do away with this, we resort to the modified ver-
sion of NJA as was proposed by Azreg-Aı̈nou’s non-
complexification procedure [82], where the modification
is incorporated in the third step (rest all steps are same).
As per this new procedure, the complexification of the
radial coordinate r is simply dropped and instead of that
we consider δµν , in Eq. (A6), transform as a vector under
the transformation (A7). In that case the metric coef-
ficients f(r), g(r) and h(r) transform to F = F (r, a, θ),
G = G(r, a, θ) and H = H(r, a, θ), respectively. The
final form of the rotating metric in Boyer Lindquist co-
ordinates after applying the modified NJA becomes (see
Appendix A 2):

ds2 = −Fdt2 − 2a sin2 θ

(√
F

G
− F

)
dtdφ+

H

∆(r)
dr2

+ Hdθ2 + sin2 θ

[
H + a2 sin2 θ

(
2

√
F

G
− F

)]
dφ2 , (9)

where

∆(r) = GH + a2 sin2 θ = g(r)h(r) + a2 ; (10)
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and F,G are given by (A16) and (A17), respectively while
H remains undetermined. The above one represents the
rotating AOS BH. We will work with this form of the
metric.

III. FINDING THE SHADOWS

A. Working formulas

We shall now discuss the equations involved in obtain-
ing the contour of the shadow. Since shadow contours
correspond to unstable circular null geodesics, it is nec-
essary to obtain such equations first for the metric of our
case. To find the null geodesics around the AOS BH we
shall use the Hamilton-Jacobi (H-J) equation. We give
here the required expression for rotating case, given by
metric (9). The non-rotating results can be obtained just
by setting a = 0. After some calculations (see Appendix
B), the separated geodesic equations for the photon are
found to be

F

G
∆(r)

dt

dλ
=

[
H + a2 sin2 θ

(
2

√
F

G
− F

)]
E

− a

(√
F

G
− F

)
L ; (11)

F

G
∆(r) sin2 θ

dφ

dλ
= a sin2 θ

(√
F

G
− F

)
E + FL ; (12)

and

H
dr

dλ
= ±

√
R(r) ; (13)

H
dθ

dλ
= ±

√
Θ(θ) , (14)

where

R(r) = [Σ(r)E − aL]
2 −∆(r)

[
Q+ (L− aE)

2
]
, (15)

and

Θ(θ) = Q+ a2E2 cos2 θ − L2 cot2 θ . (16)

In the above Σ(r) symbolizes

Σ(r) =

√
G

F
H + a2 sin2 θ =

√
g(r)

f(r)
h(r) + a2 . (17)

Here R(r) and Θ(θ) must be non-negative; i.e., for the
photon motion, we must have

R(r)

E2
= [Σ(r)− aξ]2 −∆(r)

[
η + (ξ − a)

2
]
≥ 0 , (18)

and

Θ(θ)

E2
= η + (ξ − a)2 −

(
ξ

sin θ
− a sin θ

)2

≥ 0 , (19)

In the above ξ[= L/E] and η[= Q/E2] are the critical
impact parameters (also known as Chandrasekhar’s con-
stants) that determine the motion of the photon.

As already stated, the contour of a shadow depends on
the unstable light rings. In the general rotating space-
time, these unstable circular photon orbits must satisfy ,
R(rph) = 0, R′(rph) = 0 and R′′(rph) ≥ 0, where r = rph
is the radius of the unstable photon orbit. From the first
two conditions we have

[Σ(rph)− aξ]2 −∆(rph)
[
η + (ξ − a)

2
]

= 0 , (20)

and

2Σ′(rph) [Σ(rph)− aξ]−∆′(rph)
[
η + (ξ − a)

2
]

= 0 .

(21)
The valid solution for ξ for describing a BH shadow that
is found from above is

ξ =
Σ(rph)∆′(rph)− 2∆(rph)Σ′(rph)

a∆′(rph)
. (22)

Using this and solving for η we have,

η =
4a2Σ′2ph∆ph −

[(
Σph − a2

)
∆′ph − 2Σ′ph∆ph

]2
a2∆′2ph

.

(23)
where the subscript “ph” indicates that the quantities
are evaluated at r = rph. The general expressions for the
critical impact parameters ξ and η of the unstable pho-
ton orbits are given by equations (22) and (23). In order
to obtain the apparent shape of a shadow, the celestial
coordinates α and β which lie in the celestial plane per-
pendicular to the line joining the observer and the center
of the spacetime geometry are used. If the observer is
situated at (r0, θ0), then the celestial coordinates are de-
fined as [83]

α = −r2
0 sin θ0

dφ

dr

∣∣∣
(r0,θ0)

, (24)

and

β = r2
0

dθ

dr

∣∣∣
(r0,θ0)

, (25)

If the general metric is asymptotically flat, then the above
equations reduce to

α = − ξ

sin θ0
, (26)

and

β = ±
√
η + a2 cos2 θ0 − ξ2 cot2 θ0 . (27)
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Using Eqs. (22), (23), (26) and (27), parametric plots
of α and β are obtained by using the unstable photon or-
bit radius rph as a parameter that define the contour of
the shadow. It is to be mentioned here that the expres-
sions for Σ(r) and ∆(r) contain the spherically symmetric
static metric functions f(r), g(r) and h(r). So to obtain
the shadow for rotating metric, the information from the
non-rotating spacetime will be used.

B. Shadow for non rotating case

In this section we shall discuss how the shadow contour
looks for the case of a non-rotating AOS BH i.e., for a = 0
as described by the metric (4). Also since the underlying
metric now is spherically symmetric, so the shadow to
an observer seems the same whatever be the value of
θ0. Hence we can take up the simple case of θ0 = π

2 .
Equation (26) and (27) then reduces to

α = −ξ ; β = ±√η , (28)

and so we have

α2 + β2 = ξ2 + η . (29)

With the spin parameter a set to zero we have ∆(r) =

G(r)H(r) = g(r)h(r) and Σ(r) = k(r) =
√

g(r)
f(r)h(r) =

√
G(r)
F (r)H(r) and, from the conditions R(rph) = 0 and

R′(rph) = 0 we obtain the following equations

η + ξ2 =
h(rps)

f(rps)
, (30)

and

f ′(rps)h(rps)− f(rps)h
′(rps) = 0 . (31)

Solving equation (31) we get the value of radius of the
photon sphere rps. Putting this value in (30) gives the
value of Rsh, the radius of the shadow contour:

Rsh =
√
α2 + β2 =

√
ξ2 + η =

√
h(rps)

f(rps)
. (32)

The shadows for the non-rotating AOS BH along with
the Schwarzschild one is plotted in Fig. 2 for different
values of m and the quantum parameters δc and ε as
mentioned in Table I. It is immediately seen that the
shadow radius for the quantum corrected AOS BHs are
always small for a whole range of mass, starting from
1`pl to 10`pl, compared to the shadow radius of the
Schwarzschild BH. As the mass of the AOS BH increases
from 1`pl to 10`pl, the radii also increase accordingly.

m γ δc δb ε rps Rsh

1`pl - 0 0 0 4.84×10−35 8.39×10−35

1`pl 0.2375 2.92× 10−36 2.52 0.16 4.99×10−35 8.17×10−35

2`pl 0.2375 2.32× 10−36 2.01 0.11 9.87×10−35 1.6×10−34

10`pl 0.2375 1.35× 10−36 1.17 0.03 4.87×10−34 8.34×10−34

TABLE I: The table shows the values of different parameters for the non-rotating case. The first row contains the numbers
for Schwarzschild black hole with mass m = 1`pl and the corresponding rows contain the values for the AOS black hole with
masses 1`pl, 2`pl and 10`pl respectively.

C. Shadow for the rotating AOS BH

We shall now apply the above formulae to obtain the
contour of the shadow of a rotating AOS BH whose cor-
responding non-rotating counterpart is represented by
the metric (4) with the metric coefficients given by (6),
(7) and (8). Also we want to compare and see how the
shadow contour for quantum case varies with that of Kerr
case. The Kerr results can be obtained by setting the
quantum parameters δc and ε in (6), (7) and (8) to zero.

In figures from Fig 3 to Fig 5, the contours of the
shadow are shown for the rotating AOS and Kerr BHs
for different values of m and spin parameter a.

Also the shape of shadows at different inclination an-
gles for spin parameter a = 0.9m ( m = 1`pl ) has been
shown in Fig. 4 to see the variation in shadow with vary-
ing inclination angles.

It is observed after comparing the Quantum and Kerr
case in Fig. 3 that the presence of quantum parameters
tends to shrink the shadow i.e., the size of the shadow
decreases due to quantum effect. Note that in Fig 3 the
dashed contours represent the Kerr case while the solid
contours represent the rotating AOS BH. As the quan-
tum parameters δc and ε are increased(i.e. for the smaller
masses), both the photon sphere radius and shadow ra-
dius decreases. In Fig 3 - Fig 5, we are plotting α

m and
β
m . In the Kerr and Schwarzchild cases, this quantity



6

-4 -2 2 4

α

m

-4

-2

2

4

β

m

FIG. 1: Shadows for the classical Schwarzchild BHs for dif-
ferent values mass. Note that all the plots coincide since the
ratios α

m
, β
m

scale uniformly, independent of the mass. As
in Fig 2, the red, blue and black lines correspond to masses
m = 1lPl,m = 2lPl and m = 10lPl

scales uniformly, and hence we do not see a difference
with changing mass. However, in the AOS case, since
the masses are a function of the quantum parameters,
the scaling of these ratios are not uniform, which lead
to the corrections observed in the plots. Observing these
figures,it can be inferred that for a fixed mass, the shadow
shrinks more on the right hand side than on the left hand
due to quantum effect when compared with the Kerr case
and as the mass is increased, there is not much variation
in the shadows of Kerr case and quantum AOS case.This
happens because the quantum parameters δc and ε are
inversely proportional to m as can be seen from equation
(3), so their values decrease when mass is increased and
hence their impact on the shadow also reduces. With in-
creasing values of a, not only the shadow size decreases
but also the shape gets distorted. As can be seen, this
distortion is more on the left part of the plot than on the
right. While classically as well the asymmetry can be
explained by frame dragging, the quantum corrections
affect the rotating AOS black hole differently compared
to a simple mass scaling. For a fixed value of the rota-
tion parameter a, if we compare the change in mass of
Kerr to that of rotating AOS as in Fig 5, we find that
there is a non-trivial difference in the shadow curvature
at the left and right points in AOS while in Kerr, the
shadow contours are unaffected. As noted earlier, we see
that the deviation from the mass is more on the right
side. This can be explained by looking at how the quan-
tum corrections affect the curvature of the shadow at the
left and right points. The two sides in the shadow con-

-6 -4 -2 2 4 6

α

m

-6

-4

-2

2

4

6

β

m

1.40 1.45 1.50 1.55 1.60 1.65

4.85

4.90

4.95

5.00

5.05

FIG. 2: Shadows for the non rotating AOS BH for different
values of the quantum parameters δc and ε. The green circle
corresponds to the standard Schwarzschild BH shadow with
m = 1`pl. The red, blue and black circles correspond to the
quantum case with masses m = 1`pl, m = 2`pl and m = 10`pl
respectively. A partly zoomed plot of the shadow contour in
the first quadrant is plotted in the inset for understanding the
difference between the standard Schwarzschild case with the
AOS one.

tour generally reflect the prograde and retrograde orbits
around the black hole. We can compare the curvature at
the two extreme points for the Kerr and AOS case, as is
done in 6. Further we wish to point out that the left cur-
vature for the AOS rotating black hole, falls faster than
that of Kerr for larger a

M . In Fig 6, the curvature on
the left crossing point crosses the X axis before a = M ,
indicated by the dashed black line. This has to do with
the horizon structure of the rotating AOS black holes in
this regime, and will be studied in detail in Sec IV.B.1.
Also from Fig. 4, it is seen that for a fixed value of m
and a, if the inclination angle is increased, then the devi-
ation from circularity increases and the shadow size also
becomes smaller.

IV. SUPER-RADIANCE PHENOMENA

A. Condition for super-radiance

For super-radiance one needs to concentrate on the
near horizon field modes which are radially in going. In
the semi-classical level the modes can be taken as the
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-4 -2 2 4 6

α

m

-4

-2

2

4

β

m

Comparing Kerr and Rotating AOS Shadows m = 1 lPl

-4 -2 2 4 6

α

m

-4

-2

2

4

β

m

Comparing Kerr and Rotating AOS Shadows m = 2 lPl
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FIG. 3: The figure shows the contours of shadow for different values spin parameter a with m = 1`pl, 2`pl, 10`pl. Color codes:
Red (a = 0.2m), Blue (a = 0.7m) and Black (a = 0.9m). The dashed contours represent the Kerr case while the solid contours
represent the rotating AOS BH.

following form (here we consider massless scalar modes)

Ψ ∼ eiS(t,r,θ,φ) . (33)

In the above S(t, r, θ, φ), for our rotating metric (9) can
be considered of the form (B3) with µ = 0. The radial
part can be determined from the solution of (B5). Since
we are interested in near horizon regime, this equation
will be solved after reducing it in the near horizon form.
Note that the horizon is determined by the vanishing of
∆(r), given in (10). Using the tortoise coordinate r∗,
defined as dr∗/dr = (k(r) + a2)/∆(r), Eq. (B5) can be

expressed as

−
(dSr
dr∗

)2

+

[(√G
FH + a2 sin2 θ

)
E − aL

k(r) + a2

]2

− (L− aE)2 +Q
(k(r) + a2)2

∆ = 0 . (34)

In the near horizon limit as ∆ → 0, the above can be
written approximately as(dSr

dr∗

)
' ±

[
E − aL

k(rH) + a2

]
, (35)

where k(r) is given in (A15). The solution is found out
to be as

Sr ∼ ±
[
E − aL

k(rH) + a2

]
r∗ . (36)
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Therefore, by (33) the near horizon mode solution comes
out to be

Ψ ∼ Sθe−iEteiLφe
±i
[
E− aL

k(rH )+a2

]
r∗

, (37)

where we denote eiSθ by Sθ, as explicit expression of Sθ is
unimportant for the present purpose. The value of k(rH)
reduces to a very simple form:

k(rH) = 4r2
H

(
1 +

γ2L2
0δ

2
cr

2
S

16r4
H

) (1 + ε)2
(
rH
rS

)2+ε(
ε+ (2 + ε)( rHrS )1+ε

)2 .

(38)

In (37), negative (positive) sign corresponds to the in-
going (outgoing) mode. Since we are interested for the
super-radiant modes, we will concentrate on the ingoing
mode solution.

In order to find the condition for ingoing mode to be
super-radiant one can follow the usual procedure (e.g. see
the analysis in Section 8.6 of [84]). Since rest of the anal-
ysis is identical to the usual one, without going into the
details we just give the final condition for finding super-
radiant mode. Following [84] one finds the expression for
energy flux through the horizon for massless scalar field
as

dE
dt

= C1E
(
E − aL

k(rH) + a2

)
, (39)

where C1 is a positive constant, whose value is not im-
portant here. Then the condition for super-radiance in

the present situation turns out to be
(
E− aL

k(rH)+a2

)
< 0;

i.e.

0 < E <
aL

k(rH) + a2
, (40)

where k(rH) is given by (38).

Let us now concentrate to find the angular velocity of
the rotating AOS BH. This can be easily found out by
considering θ = π/2 in metric (9). Under this circum-
stances the metric reduces to

[
H+a2

(
2

√
F

G
−F
)](dφ

dt

)2

−2a
(√F

G
−F
)(dφ

dt

)
−F = 0 .

(41)
Remember that in the above all the function are defined
at θ = π/2.

The solutions are

(dφ
dt

)
±

=
a
(√

F
G − F

)
±
√
a2
(√

F
G − F

)2

+ F
[
H + a2

(
2
√

F
G − F

)]
H + a2

(
2
√

F
G − F

) . (42)

The horizon angular velocity is given by the minimum

value of
(
dφ
dt

)
, calculated at the horizon. For θ = π/2,

from (A16) and (A17) we have F = (gh/k2)H and G =
gh/H. Substituting these in the negative sign solution

in (42) one finds

(dφ
dt

)
−

=
a
(

1
k −

gh
k2

)
− 1

k

√
a2 + gh

1 + a2
(

2
k −

gh
k2

) . (43)

Now at the horizon we have ∆(rH) = 0 which, from (10),
yields g(rH)h(rH) + a2 = 0. Using this in the above we
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FIG. 7: Behaviour of angular velocity (ΩH) of the rotating
AOS and the Kerr BH with respect to k(rH) with mass m =
1`pl and for different values of the spin parameter a. The
open circles are for the AOS BH and the open squares are for
the Kerr case. Different colours of the legends imply different
spin parameters for the BH, viz., Red: a = 0.1m, Green:
a = 0.2m, Blue: a = 0.3m, Black: a = 0.4m, Cyan: a =
0.5m, Orange: a = 0.6m, Yellow: a = 0.7m, Grey: a = 0.8m
and Magenta: a = 0.9m respectively. For smaller values of
a, there is an overlap between the rotating AOS and Kerr
results.

find the angular velocity of the BH as

ΩH =
a

k(rH) + a2
. (44)

Then in terms of the angular velocity the condition for
super-radiance take the following form:

0 < E < LΩH , (45)

which is similar in form for the usual Kerr BH. In this
case only ΩH has been modified which incorporates all
the quantum effects. A behaviour of the angular veloc-
ity of the horizon with respect to k(rH) for the AOS BH
with mass 1`pl and for different values of the spin param-
eters (starting from a = 0.1m to a = 0.9m is plotted in
Fig. (7). We have also plotted the respective Kerr angu-
lar velocity in the same plot for the same value of mass.
It turns out that the behaviour of the horizon angular
velocity of the Kerr BHs and the rotating AOS BHs are
very similar and almost exactly matches for small values
of the spin parameter a, while, as the spin parameter in-
creases, the value of the angular velocity starts to change
significantly.

B. Amplification factor: scalar field scattering and
the Teukolsky formalism

The calculation of superradiance amplification factors
can be done using the Teukolsky formalism. The ap-
proach is discussed in detail in the recent review [85].
In the Kerr geometry, the perturbations can be writ-
ten down in the form of the Teukolsky master equation
[86, 87]. For scalar perturbation, the dynamical equation
is given by the Klein Gordon equation in this curved
spacetime. Here we consider massless scalar fields ψ
propagating in the rotating AOS background (9). Thus,
the Klein Gordon equation is given by 2ψ = 0. Using
the symmetry in (t, φ), we consider the ansatz

ψ(t, r, θ, φ) = e−i(ωt+qφ)S(θ)J(r) , (46)

where q is the azimuthal number. Under that above form
of solution, in tortoise coordinate we can then write the
radial part of the Klein Gordon equation in the following
Schrödinger like form (see Appendix C):

d2Φ

dr2
∗

+ Veff Φ = 0 , (47)

where function Φ is related to the radial function J(r) as

Φ =
√
k(r) + a2J . The form of Veff is given in Appendix

C. The solutions of the above equation is obtained under
a boundary condition such that their asymptotic form
must satisfy

Φ =

{
Te−ikHr∗ for r → rH

Ie−ik∞r∗ +Reik∞r∗ for r →∞ ,
(48)

the wave numbers kH and k∞ are given by k2
H = Veff(r →

rH) and k2
∞ = Veff(r → ∞), respectively. Moreover the

relation between different coefficients is given by [85]

|R|2 = |I|2 − kH
k∞
|T |2 . (49)

For superradiant amplification, we must have |R|2 > |I|2.
It will be satisfied if one has kH

k∞
< 0. For scalar fields,

the amplification factor is defined as [85]

Zslq = Z0lq =

∣∣∣∣RI
∣∣∣∣2 − 1 . (50)

Using the above one we will find the amplification factor
for AOS black hole.

To obtain the coefficients R, I, we need to solve the
radial part (47). In terms of J variable and r coordinate
this takes the form

d

dr

(
∆

dJ

dr

)
+

(
K2

∆
− λ
)
J = 0 , (51)

where K = (k(r)+a2)ω−qa and λ = A0lq+a
2ω2−2aqω is

the constant of separation. A0lq are the angular eigenval-
ues (see Appendix C). To solve it we consider the small
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rotation approximation, as adopted in [85]. For suffi-
ciently small rotation i.e aω << 1, the angular eigen-
values are given by A0lq = l(l + 1) + O(a2ω2). In what
follows, we set ~ = 1 (in addition to G = c = 1) and
take E = ω,L = q and take m = GM/c2 ≡ M as the
black hole mass. Note that solving (51) is equivalent to
solving (47) since one can derive (47) from (51) as shown
in Appendix C.

We solve this using matching asymptotic techniques,
which is discussed in detail in Appendix (C). It must be
noted to obtain the solution one should have the knowl-
edge of the outer horizon. In the case of AOS, we have not
yet considered the structure of the horizon. But in the
regime where quantum corrections are small, we demand
that the outer horizon of AOS be obtained by finding the
quantum corrections to the outer horizon of Kerr. In the
following section, we discuss in detail how to obtain these
roots, upto first order in ε.

1. Horizon Structure

For the rotating AOS black hole, we do not yet have
an analytical expression for the horizon. This is difficult
since the roots of ∆ = 0 generally give the horizon, but
here, the quantum parameters are found in the exponent
of the variable r in the function, if one explicitly writes
it down. In this context, we consider “small” quantum
corrections such that one can expand ∆ about the Kerr
outer horizon. That is to say, we will consider a Taylor’s
expansion of ∆ upto 2nd order about r = rKerr

+ and up
to first order about ε = 0, which gives us two roots for ∆.
On considering the classical limit, we find that one of the
roots reduces to rKerr

+ . We denote this root as r+ in what
follows, and is (up to first order in ε) the outer horizon of
the rotating AOS metric. The other root represents some
other surface which does not have the interpretation of
the horizon, and we shall denote this by r′. Thus, around
r = rKerr

+ , we can approximately write ∆ in the form
∆ = (r − r+) (r − r′), upto first order in ε. The actual
expressions are included in a Mathematica notebook [88].

Usually, demanding that ∆ = 0 has real roots is used
to find the location of the horizon and to avoid a naked
singularity. For the Kerr black hole, this is achieved by
the condition M > a. In the AOS case, this is modified.
Given the form of ∆, one can check whether roots to this
equation exist, in the region where the classical condition
holds. That is, we want to check the horizon structure
of the rotating AOS black hole, inside the classically al-
lowed region. In doing so, we find the following param-
eter space. We see that even with maintaining M > a,
certain values of a are only available to black holes with
higher masses since ∆ becomes completely positive and
hence has no roots, when a

m is high. The precise thresh-
old of a

m past which ∆ fails to have roots depends on
the value of M and is seen to increase, for increasing
M . This can be observed from the parameter space plot,
shown in Fig (8). The complete region represents the
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FIG. 8: Comparing allowed parameter space in a
M

vs M plane
for Kerr and AOS.

classically allowed region of parameters. The blue curve
and the region under the curve represents the threshold
at which the rotating AOS black hole horizon ceases to
exist since ∆ ceases to have roots beyond the threshold
value of a

M . Therefore, even in the classically allowed re-
gion, the quantum corrections play a role so as to further
restrict the parameter space under which the rotating
AOS black hole horizon is well defined. Note that this
does not require the first order expansion in ε, δ since this
is obtained directly from the function ∆. A simulation
showing the change in the function ∆ is included in the
Mathematica notebook attached [88].

2. Estimation of amplification factor

We can now solve the radial equation, (see Appendix
C) and obtain the amplification factors. The amplifica-
tion factors Z011 and Z033 are plotted as a function of
ωM in Fig 9 and Fig 10. We look at the effect of the
rotation parameter a, effect of the mass of the black hole
in Fig 9 and10 respectively.

V. CONCLUSION

We investigated the properties of the shadow of a re-
cently obtained regular BH in [4–6]. The spacetime is
being modified from the LQG inspired theory. It is found
that the singularity r = 0 is now hidden by a lowest pos-
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FIG. 9: Comparing the effect of the rotation parameter a for
Z011 with M = 102 (in units of lPl), We see that for black
holes of a constant mass, an increase in the rotation param-
eter increases the separation between the AOS and Kerr su-
perradiance. In this mass regime, superradiant amplification
in AOS starts out lower than that of Kerr, but increases and
exceeds Kerr with an increase in a

sible value of the area element. We studied shadows for
both non-rotating and as well rotating cases. It is being
found that the quantum corrections can put significant
signature in shadow when the BH size is of the Planck
order. We noticed that although the shape of the shad-
ows, comparing with those for Schwarzschild BH, do not
change in non-rotating case in presence of the quantum
corrections, but the area of the shadow decreases. The
shadow radius increases as we increase mass of the BH
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FIG. 10: Comparing the effect of increasing mass M on Z011

with a = 0.99M (with M in units of lPl). By varying the
mass with a constant rotation parameter, we see the opposite
effect. The amplification is much more closer between Kerr
and AOS. This can be understood by noting that an increase
in mass corresponds to a decrease in quantum correction ef-
fects. Thus, the large mass limit and the classical limit, are
identical.

and after certain value of mass both are indistinguish-
able. This shows that the quantum correction makes
prominent signature on shadow for a very small Planck
mass BH.

The rotating counterpart also behaves similarly. Here
also the area of the shadow decreases due to quantum
effect. Moreover, the contraction is less on the left hand
side compared to the other side in rotating AOS BH
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shadow when compared with its classical counterpart,
i.e. the Kerr BH. As we increase the mass of the BH,
the distortion from Kerr starts to reduce. Increase of the
rotation also imparts more distortion on the right side
while the same decreases on the left part.

We also studied the super-radiance phenomenon for
the rotating AOS BH. We observed that the condition for
massless scalar field super-radiance is identical to that of
the Kerr case. But here, the rotation of the BH is more
than that compared to Kerr in the low mass regime. As
we increase mass of BH the difference from Kerr starts
to become insignificant. This implies that for low mass
AOS BH the window for energy of scalar field to per-
form super-radiance is larger than higher mass system.
As we increase mass, this window will become narrower
and ultimately for large mass the window will coincide
with Kerr value. The amplification factors themselves
also exhibit this trend, as seen in Fig 9 and Fig 10 where
for larger black holes, the scalar field amplification coin-
cides for AOS and Kerr. A natural next step would be
to understand superradiant scattering of other spin fields

(in this work we only consider s = 0) in this background.
This can be done by looking at the perturbations using
the Newman Penrose formalism [89], as done by Teukol-
sky, Press and others [86],[87],[90] for the Kerr geome-
try. One can make a straightforward generalisation of
the Kinnersely tetrad in the Kerr case, to look at other
spin fields in AOS.

Finally, it may be worth mentioning that the primor-
dial black holes (PBH) are microscopic in size and there-
fore the quantum effects at this scale are not going to
be negligible. Since AOS BH shows significant quantum
effects at the Planck scale it may model these PBHs.
Therefore investigation of these quantum induced space-
time can be useful to understand the nature of PBH. It
is our belief that the present study will illuminate the
properties of Planck scale physics.

Acknowledgement: The research of BRM is partially
supported by a STARTUP RESEARCH GRANT (No.
SG/PHY/P/BRM/01) from the Indian Institute of Tech-
nology Guwahati, India.

Appendix A: Derivation of metric for rotating BH through Newman-Janis algorithm (NJA)

1. Original NJA

The NJA, originally proposed in [80, 81], helps to construct a stationary and axisymmetric metric from a static
and spherically symmetric metric of the form

ds2 = −f(r)dt2 +
dr2

g(r)
+ h(r)

(
dθ2 + sin2 θdφ2

)
. (A1)

To find the required result there are certain prescribed steps to be followed. Without going into the details, let us
here just follow the prescribed steps.

The first step of the algorithm is to write down the metric (A1) in the advance null (Eddington-Finkelstein)
coordinates (u, r, θ, φ). This is achieved by using the following transformation:

du = dt− dr√
fg

. (A2)

The non rotating metric in the advance null coordinates then becomes

ds2 = −f(r)du2 − 2

√
f

g
dudr + h(r)

(
dθ2 + sin2 θdφ2

)
. (A3)

The second step is to use a null tetrad Zµα = (lµ, nµ,mµ, m̄µ) to express the inverse metric gµν in the form

gµν = −lµnν − lνnµ +mµm̄ν +mνm̄µ , (A4)

Here, the tetrad vectors satisfy the relations

lµl
µ = nµn

µ = mµm
µ = lµm

µ = nµm
µ = 0 ;

lµn
µ = −mµm̄

µ = −1 . (A5)

and m̄µ is the complex conjugate of mµ.
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The tetrad vectors satisfying the above relations are found to be

lµ = δµr , nµ =

√
g

f
δµu −

g

2
δµr , mµ =

1√
2h

(
δµθ +

i

sin θ
δµφ

)
. (A6)

The third step is to perform the complex coordinate transformations in the (u, r) plane,

u′ = u− ia cos θ; r′ = r + ia cos θ , (A7)

where a = J
m will be identified as the specific angular momentum or spin parameter of the BH, and m, J are the mass

and angular momentum of the black hole, respectively. Under these transformations the new null tetrads are

l′µ = δµr , n′µ =

√
G(r, θ)

F (r, θ)
δµu −

G(r, θ)

2
δµr ; m′µ =

1√
2H(r, θ)

(
ia sin θ(δµu − δµr ) + δµθ +

i

sin θ
δµφ

)
, (A8)

where F (r, θ) = f(r′), G(r, θ) = g(r′) and H(r, θ) = h(r′) are, respectively, the complexified form of f(r), g(r) and
h(r). Using the new tetrad, the new inverse metric is found to be

g′µν = −l′µn′ν − l′νn′µ +m′µm̄′ν +m′νm̄′µ . (A9)

Then the new metric in the advance null coordinates becomes

ds2 = −Fdu2 − 2

√
F

G
dudr + 2a sin2 θ

(
F −

√
F

G

)
dudφ+ 2a

√
F

G
sin2 θdrdφ+Hdθ2

+ sin2 θ

[
H + a2 sin2 θ

(
2

√
F

G
− F

)]
dφ2 . (A10)

The final step of the algorithm is to rewrite the above metric in Boyer-Lindquist form (where the only nonzero off
diagonal term is gt′φ′) using the global coordinate transformations of the form

du = dt′ + χ1(r)dr, dφ = dφ
′
+ χ2(r)dr . (A11)

In the above χ1(r) and χ2(r) are chosen in such a way that the metric will have only gt′φ′ non-vanishing off-diagonal
term in (t′, r, θ, φ′) coordinates. Substitution of (A11) in (A10) and then demanding the above criterion one finds the
metric of the form (9) with the following choices of χ1(r) and χ2(r):

χ1(r) = −

√
G(r,θ)
F (r,θ)H(r, θ) + a2 sin2 θ

G(r, θ)H(r, θ) + a2 sin2 θ
≡ −A(r)

B(r)
, (A12)

χ2(r) = − a

G(r, θ)H(r, θ) + a2 sin2 θ
≡ − a

B(r)
. (A13)

In (9) we dropped the prime in time and azimuthal coordinates. This line element represents the desired metric for
stationary, axisymmetric spacetime.

It must be mentioned that the transformations in (A11) are possible (i.e. these have to be integrable) only when
χ1(r) and χ2(r) are functions of only r and not θ. This implies that the denominator in (A13) must be function of
r only, which we call as B(r). Consequently, the numerator in (A12) must be again function of r only (we call this
as A(r)). This is a very non-trivial restriction and may not be always satisfied for any value of f(r), g(r) and h(r)
under the complexification (A7). Incidentally for Schwarzschild black hole this is satisfied and one obtains the Kerr
metric from (9). Whereas our present static, spherically symmetric metric coefficients, given in (6), (7) and (8), do
not satisfy these conditions. Therefore the above ditto procedure fails to provide the rotating solution for AOS black
hole.

2. Modified NJA

We see that the original NJA may fail for some spherically symmetric static metric, like the present one. A little
modification in the approach, as shown in [82], successfully overcomes this difficulty. For that it is assumed that we
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have somehow obtained a metric of the form (A10). In this case we do not know the exact form of G,F and H; i.e.
we are not using the specific complexification, given in (A7). But the null tetrads are of the form (A8) so that we
have a rotating metric, given by (A10). Then in the final step of the earlier subsection, take again the transformations
of u and φ coordinates similar in form as (A11):

du = dt′ + λ(r)dr, dφ = dφ
′
+ χ(r)dr . (A14)

But here choose the unknown functions as

λ(r) = − k(r) + a2

g(r)h(r) + a2
; χ(r) = − a

g(r)h(r) + a2
; k(r) =

√
g(r)

f(r)
h(r) . (A15)

Note that the above choice is inspired by the forms (A12) and (A13). Since λ and χ have to be function of r only, the
original metric coefficients of (A1) are intentionally positioned at the places where, in (A12) and (A13), we had the
complexified versions of them. Also sin2 θ has been removed. This guarantees only radial dependence of our unknown
functions for any given static, spherically symmetric metric.

In order to find F,G and H we will use the earlier trick. Since we want metric to be in Boyer-Lindquist form, after
inserting (A14) with (A15) in (A10), set gt′r and grφ′ to be zero. This will give us the relations among F,G,H and

known functions f(r), g(r), h(r). But since we have only two equations corresponding to vanishing of two off-diagonal
metric coefficients, one function among F,G,H will remain undetermined. This yields

F =
g(r)h(r) + a2 cos2 θ

(k(r) + a2 cos2 θ)2
H ; (A16)

G =
g(r)h(r) + a2 cos2 θ

H
, (A17)

where we choose H to be undetermined. In this case the metric (A10) takes the form

ds2 = −Fdt2−2a sin2 θ

(√
F

G
−F

)
dtdφ+

H

g(r)h(r) + a2
dr2 +Hdθ2 + sin2 θ

[
H+a2 sin2 θ

(
2

√
F

G
−F

)]
dφ2 , (A18)

where we have dropped the primes in t and φ. Now as from (A17) we have

GH + a2 sin2 θ = g(r)h(r) + a2 , (A19)

the metric (A18) reduces to our desired form (9). Remember that in this case H remains undetermined, whereas F
and G are given by (A16) and (A17), respectively.

Appendix B: Photon trajectories

The Hamilton-Jacobi (H-J) equation is given by

∂S

∂λ
+

1

2
gµνpµpν = 0 , (B1)

where S is the Jacobi action of the photon, λ is the affine parameter of the null geodesic and pµ is the momentum
given by

pµ =
∂S

∂xµ
= gµν

dxν

dλ
. (B2)

Now from (9) one can see that the metric gµν is independent of t and φ. Therefore we have two constants of motion –
the conserved energy (E) and the angular momentum of the photon in the direction of the rotation axis (L). In that
case the ansatz for S is taken as

S =
1

2
µ2λ− Et+ Lφ+ Sr(r) + Sθ(θ) , (B3)

where µ is the rest mass of the particle moving in the black hole spacetime. For photons we have µ = 0. In the
above choice the radial and θ dependence are taken to be separated as we have another conserved quantity, known
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as Carter constant, for our metric. Putting Eq. (B3) in the Hamilton-Jacobi equation (B1), we obtain after some
simplifications

−
(
GH + a2 sin2 θ

) (
dSr
dr

)2

+

[(√
G
FH + a2 sin2 θ

)
E − aL

]2
(
GH + a2 sin2 θ

) − (L− aE)2

=

(
dSθ
dθ

)2

+ L2 cot2 θ − a2E2 cos2 θ . (B4)

Now, since the quantities
(
GH + a2 sin2 θ

)
= g(r)h(r)+a2 = ∆(r) and

(√
G
FH + a2 sin2 θ

)
= k(r)+a2 =

√
g(r)
f(r)h(r)+

a2 = Σ(r) are functions of r only, the left- and right-hand side of Eq. (B4) are only functions of r and θ, respectively.
Therefore, each side of this equation must be equal to some separation constant. Thus introducing the Carter constant
Q as the separation constant we have after separation

−
(
GH + a2 sin2 θ

)(dSr
dr

)2

+

[(√
G
FH + a2 sin2 θ

)
E − aL

]2
(
GH + a2 sin2 θ

) − (L− aE)2 = Q , (B5)

and (
dSθ
dθ

)2

+ L2 cot2 θ − a2E2 cos2 θ = Q . (B6)

The geodesic equations (11), (12), (13) and (14) are then obtained from (B2) by making use of (B5) and (B6).

Appendix C: Klein Gordon Equation in Rotating AOS Spacetime

1. Deriving the Schrödinger like form

We want to solve 2ψ = 0. From the line element (9), the inverse metric whose elements are given by:

gtt = −ρ
4 + 2a2 sin2 θρ2 + a4 sin θ4 − a2 sin2 θ

∆H
; (C1)

gtφ =
a∆− a3 sin2 θ − aρ2

∆H
; (C2)

grr =
∆

H
; (C3)

gθθ =
1

H
; (C4)

gφφ =
∆− a2 sin2 θ

∆H sin2 θ
. (C5)

Thus, expanding we have the equation:(
(k + a2)2 −∆a2 sin2 θ

∆

)
∂2ψ

∂t2
− 2a (gh− k)

∆

∂2ψ

∂t∂φ
−
(

∆− a2 sin2 θ

∆ sin2 θ

)
∂2ψ

∂φ2

− ρ2

H

∂

∂r

(
H∆

ρ2

∂ψ

∂r

)
− ρ2

H sin θ

∂

∂θ

(
H sin θ

ρ2

∂ψ

∂θ

)
= 0 . (C6)

Note that the form of H is unknown to us. Without this the solution can not be obtained. We proceed in the following
way to encounter the situation.

Under the classical limit the functions k, f, g, h have the limits given by: h(r)→ r2,
√

g(r)
f(r) → 1, k(r)→ r2. Thus, if

we take the classical limit of (C6), demanding that this must be the Klein Gordon equation for a massless scalar field
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in Kerr, we can fix the form for the so far undetermined function H. This turns out to be H = ρ2 = k(r) + a2 cos2 θ.
Substituting this into the Klein Gordon equation, we have:(

(k + a2)2 −∆a2 sin2 θ

∆

)
∂2ψ

∂t2
− 2a (gh− k)

∆

∂2ψ

∂t∂φ
−
(

∆− a2 sin2 θ

∆ sin2 θ

)
∂2ψ

∂φ2

− ∂

∂r

(
∆
∂ψ

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
= 0 . (C7)

Now, we consider the ansatz given in (46). Using this in the above equation we can separate (C7), and obtain the
following equations:

d

dr

(
∆

dJ

dr

)
+

(
ω2(k + a2)2 + 2qωa (gh− k) + q2a2

∆
− a2ω2 −A0lq

)
J = 0 ; (C8)

and

1

sin θ

d

dθ

(
sin θ

dS

dθ

)
+

(
ω2a2 cos2 θ − q2

sin2 θ
+A0lq

)
S = 0 , (C9)

where λ = A0lq+a2ω2−2aqω is the constant of separation. Comparing the angular equation (C9) with what one would
obtain in Kerr, we can see that they are identical. In fact, this is to be expected since the quantum corrections are only
found in the functions of the metric that depend on r and do not have any pure angular dependence. Consequently,
the solution to S(θ) is the spin weighted spheroidal harmonics (with spin s = 0 for scalar fields).

The radial equation (C8) is rewritten as

d

dr

(
∆

dJ

dr

)
+

(
K2

∆
− λ

)
J = 0 , (C10)

where K = (k(r) + a2)ω −ma and H = ρ2. We solve this using matching asymptotic techniques, which is explained
below. First, we write it in a Schrödinger like form in the tortoise coordinate:

dr

dr∗
=

∆

k(r) + a2
≡ µ(r) . (C11)

Using this, and rewriting (C10), we have:

d2J

dr2
∗

+
k′∆

(k + a2)2

dJ

dr∗
+

(
K2 −∆(λ+ a2ω2 − 2aqω)

(k(r) + a2)2

)
J = 0 . (C12)

Now, we take a transformation to define a new function: Φ =
√
k + a2J . Using this, we can write down the final

Schrödinger like equation as:

d2Φ

dr2
∗

+ Veff Φ = 0 , (C13)

where the effective potential is given by:

Veff =

(
K2 −∆(λ+ a2ω2 − 2aqω)

(k + a2)2
− u(r)2 − µu′(r)

)
. (C14)

which is implicitly a function of r∗ and u(r) = µk′

2(k+a2)2 .

2. Solving for amplification Factors

To obtain the coefficients R, I, we solve (C10). As noted earlier, this is equivalent to solving the Schrödinger like
equation (C13). We now consider only the slowly rotating approximation aω << 1. Defining a new coordinate x
given by

x =
r − r+

r+ − r′
, (C15)
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the radial equation can be approximately written as:

x2(x+ 1)2 d2J

dx2
+ x(x+ 1)

dJ

dx
+
[
k̃2x4 − λx(x+ 1) +Q2

]
J = 0 . (C16)

In the above different constant are defined as

Q =
ω − qΩH

4πσH
; 4πσH =

(r+ − r′)
k(r+) + a2

; k̃ =
1

2

∂2K

∂r2

∣∣∣∣
r+

. (C17)

Next we will follow the conventional steps which are mentioned below (see e.g. [85]):

1. Obtain the near horizon solution of Eq. (C16); i.e. the solution for the regime x << 1.

2. Obtain the far horizon limit of Eq. (C16); i.e. in the regime x >> 1.

3. Compare the large x limit of solution obtained in step 1 and small x limit of solution obtained in step 2 with the
demand that these solutions must be equal due to the continuity of ψ. This will fix the integration constants.

4. Finally demand that the obtained solutions are asymptotically of the form given in (48). This will lead to the
identification of the coefficients T, I,R.

For amplification factor we need only I and R. Following the above steps these coefficients will be obtained below.
In the near horizon regime x << 1 the equation (C16) becomes:

x2(x+ 1)2 d2J

dx2
+ x(x+ 1)

dJ

dx
+
[
Q2 − λx(x+ 1)

]
J = 0 . (C18)

This has a solution given by:

J(x) = A1x
−iQ(x+ 1)−iQF (−l, l + 1, 1− 2iQ,−x) , (C19)

where F is the hypergeometric function. In the above we have used the ingoing boundary condition at the horizon.
Following the slowly rotating approximation, we have also used Alq = l(l + 1). In the far region limit x >> 1 Eq.
(C16) becomes:

d2J

dx2
+

2

x

dJ

dx
+

[
k̃2 − λ

x2

]
J = 0 . (C20)

This has a solution of the form:

J(x) = C1e
−ik̃xxlU

(
1− l, 2l + 2, 2ik̃x

)
+ C2e

−ik̃xx−l−1U
(
−l,−2l, 2ik̃x

)
(C21)

where U is the confluent hypergeometric function. Next follow step 3. Matching the cross limits of (C19 and C21)
we find the integrations constants C1 and C2 in terms of A1 as

C1 = A1
Γ (1− 2iQ) Γ (2l + 1)

Γ (l + 1) Γ (l + 1− 2iQ)
, (C22)

and

C2 = A1
Γ (1− 2iQ) Γ (−1− 2l)

Γ (−l − 2iQ) Γ (−l)
. (C23)

Finally comparing the far solution with the asymptotic solution at infinity (given in (48)) we have the required
coefficients:

I =
1

ω

[
k̃l+1C2 (−2i)

l
Γ (−2l)

Γ (−l)
+ k̃−l

C1 (−2i)
−l−1

Γ (2l + 2)

Γ (l + 1)

]
; (C24)

and

R =
1

ω

[
k̃l+1C2 (2i)

l
Γ (−2l)

Γ (−l)
+ k̃−l

C1 (2i)
−l−1

Γ (2l + 2)

Γ (l + 1)

]
. (C25)
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Using this form for R, I we calculate the amplification factor from (50).
It must be mentioned that we encounter Γ functions with negative arguments in the amplification factors of both

the Kerr and AOS black holes. To circumvent this, we can manipulate the functions using the Γ function reflection
formula [91]:

Γ(s− a+ 1)

Γ(s− b+ 1)
= (−1)b−a

Γ(b− s)
Γ(a− s)

. (C26)

for a, b ∈ Z and complex s. This is a very standard technique in this context.
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[71] M. G. Richarte, É. L. Martins, and J. C. Fabris, Physical
Review D 105 (2022), URL https://doi.org/10.1103%

2Fphysrevd.105.064043.
[72] S. Alexander, G. Gabadadze, L. Jenks, and N. Yunes,

Black hole superradiance in dynamical chern-simons
gravity (2022), URL https://arxiv.org/abs/2201.

02220.
[73] G. Mascher, K. Destounis, and K. D. Kokkotas, Physical

Review D 105 (2022), URL https://doi.org/10.1103%

2Fphysrevd.105.084052.
[74] T. Ishii, Y. Kaku, and K. Murata, Journal of High Energy

Physics 2022 (2022), URL https://doi.org/10.1007%

2Fjhep10%282022%29024.
[75] S. K. Jha and A. Rahaman, Superradiance scattering off

rotating simpson-visser black hole and its shadow in the
non-commutative setting (2022), URL https://arxiv.

org/abs/2208.13176.
[76] Y. Chen, R. Roy, S. Vagnozzi, and L. Visinelli, Physical

Review D 106 (2022), URL https://doi.org/10.1103%

2Fphysrevd.106.043021.
[77] W.-X. Chen and Y.-G. Zheng, The superradiant sta-

bility of kerr-newman black holes (2021), URL https:

//arxiv.org/abs/2103.04239.
[78] B. Cuadros-Melgar, R. Fontana, and J. de Oliveira, Phys-

ical Review D 104 (2021), URL https://doi.org/10.

1103%2Fphysrevd.104.104039.
[79] M. Khodadi and R. Pourkhodabakhshi, Physical Re-

view D 106 (2022), URL https://doi.org/10.1103%

2Fphysrevd.106.084047.
[80] E. T. Newman and A. I. Janis, J. Math. Phys. 6, 915

(1965).
[81] E. T. Newman, R. Couch, K. Chinnapared, A. Exton,

A. Prakash, and R. Torrence, J. Math. Phys. 6, 918
(1965).

[82] M. Azreg-Aı̈nou, Phys. Rev. D 90, 064041 (2014).
[83] V. P. Frolov and A. Zelnikov, Oxford University Press,

UK (2011).
[84] T. Padmanabhan, Cambridge University Press (2010).
[85] R. Brito, V. Cardoso, and P. Pani, Superradiance

(Springer, 2020).
[86] S. A. Teukolsky, Physical Review Letters 29, 1114 (1972).
[87] S. A. Teukolsky, The Astrophysical Journal 185, 635

(1973).
[88] Mathematica Notebook on horizons and allowed

parameter space, https://www.dropbox.com/sh/

t1v9wqs2hdzkr10/AADdd8OGLzmGcNnOavQhr40Ma?dl=0.
[89] E. Newman and R. Penrose, Journal of Mathematical

Physics 3, 566 (1962).
[90] W. H. Press and S. A. Teukolsky, The Astrophysical

Journal 185, 649 (1973).
[91] Wolfram Mathworld - Binomial Coefficient

(Equation 5), https://mathworld.wolfram.com/

BinomialCoefficient.html.

https://doi.org/10.1088%2F1361-6382%2Fab6f7d
https://doi.org/10.1088%2F1361-6382%2Fab7965
https://doi.org/10.1088%2F1361-6382%2Fab7965
https://arxiv.org/abs/2208.01995
https://arxiv.org/abs/2002.10496
https://arxiv.org/abs/2002.10496
https://doi.org/10.1103%2Fphysrevd.103.104034
https://doi.org/10.1103%2Fphysrevd.103.104034
https://doi.org/10.1103%2Fphysrevd.103.064051
https://doi.org/10.1103%2Fphysrevd.103.064051
https://doi.org/10.1016%2Fj.physletb.2021.136775
https://doi.org/10.1016%2Fj.physletb.2021.136775
https://doi.org/10.1103%2Fphysrevd.105.064043
https://doi.org/10.1103%2Fphysrevd.105.064043
https://arxiv.org/abs/2201.02220
https://arxiv.org/abs/2201.02220
https://doi.org/10.1103%2Fphysrevd.105.084052
https://doi.org/10.1103%2Fphysrevd.105.084052
https://doi.org/10.1007%2Fjhep10%282022%29024
https://doi.org/10.1007%2Fjhep10%282022%29024
https://arxiv.org/abs/2208.13176
https://arxiv.org/abs/2208.13176
https://doi.org/10.1103%2Fphysrevd.106.043021
https://doi.org/10.1103%2Fphysrevd.106.043021
https://arxiv.org/abs/2103.04239
https://arxiv.org/abs/2103.04239
https://doi.org/10.1103%2Fphysrevd.104.104039
https://doi.org/10.1103%2Fphysrevd.104.104039
https://doi.org/10.1103%2Fphysrevd.106.084047
https://doi.org/10.1103%2Fphysrevd.106.084047
https://www.dropbox.com/sh/t1v9wqs2hdzkr10/AADdd8OGLzmGcNnOavQhr40Ma?dl=0
https://www.dropbox.com/sh/t1v9wqs2hdzkr10/AADdd8OGLzmGcNnOavQhr40Ma?dl=0
https://mathworld.wolfram.com/BinomialCoefficient.html
https://mathworld.wolfram.com/BinomialCoefficient.html

	I Introduction
	II AOS black hole
	A Non-rotating AOS: a brief review
	B Rotating spacetime through modified Newman-Janis Algorithm

	III Finding the shadows
	A Working formulas
	B Shadow for non rotating case
	C Shadow for the rotating AOS BH

	IV Super-radiance phenomena
	A Condition for super-radiance
	B Amplification factor: scalar field scattering and the Teukolsky formalism
	1 Horizon Structure
	2 Estimation of amplification factor


	V Conclusion
	A Derivation of metric for rotating BH through Newman-Janis algorithm (NJA)
	1 Original NJA
	2 Modified NJA

	B Photon trajectories
	C Klein Gordon Equation in Rotating AOS Spacetime
	1 Deriving the Schrödinger like form
	2 Solving for amplification Factors

	 References

